设M(t,0),N(t?1,0),AM?(t,?3),AN?(t?1,?3)
111AMAN?t2?t?3?(t?)2?(?3?t?2)
24111当t??时,有最小值为,当t?2时有最大值为9.
2411AMAN的范围[,9].
4?x2?2|x|?6(x??1)21.解:(Ⅰ)∵a?2,∴f(x)??,
(x??1)?2x?5当x??1时,由f(x)?x?2|x|?6?2,解得?2?|x|?4,∴?1?x?4, 当x??1时,由f(x)?2x?5?2,解得x?27,∴x??1, 2综上所得,不等式f(x)?2的解集是?x|x?4?.
(Ⅱ)证明:(1)当x?0时,注意到:??5a?8?0,记x?ax?a?2?0的两根为x1,x2,
2∵x1x2??a?2?0,∴f(x)?0在(0,??)上有且只有1个解;
222
(2)当x??1时,f(x)?ax?a?1?0, 1)当a?0时方程无解, 2)当a?0时,得x?a?21, a10 若a?0,则x?a?1?0,此时f(x)?0在(??,?1)上没有解; a120 若a?0,则x?a???2,此时f(x)?0在(??,?1)上有1个解;
a22(3)当?1?x?0时,f(x)?x?ax?a?2,
∵f(0)??a?2?0,f(?1)??a?a?1?0,∴f(x)?x?ax?a?2?0, ∴f(x)?0在[?1,0)上没有解.
综上可得,当a?0时f(x)?0只有1个解;当a?0时f(x)?0有2个解.
2222?(a1?4d)2?(a1?2d)(a1?8d)??a1?0?a?a3?a9???22.解:(Ⅰ)由?, ??10?(10?1)d?1S?45d?45???10?10a1??225∴an?n?1,
n∴b1?a3?2,b2?a5?4,b3?a9?8,易得bn?2.
nn?1n2(Ⅱ)若m?17,则cn?(2?16)(2?16)?2(2?12)?32,
当n?3或n?4,cn取得最小值0. (Ⅲ)cn?(bn?am)(bn?1?am)?22n?1?3(m?1)2n?(m?1)2,
n22令2?tn,则cn?f(tn)?2tn?3(m?1)tn?(m?1),根据二次函数的图象和性质,当c1取得最小值时,
t1在抛物线对称轴tn?c2?c3?c4?3(m?1)的左、右侧都有可能,但t2?t3?t4?4都在对称轴的右侧,必有
.而c1取得最小值,∴c1?c2?c3?c4?,等价于c1?c2.
由c1?c2解得1?m?5,∴A1?a1?a2?同理,当ci(i?2,3,ii?1?a5?10,
?ci?ci?1?ci?2?)取得最小值时,只需??ci?ci?1?ci?2??1,
?a2i?1?1?3?22i?1?3?2i?1.
?ci?1?ci ??c?c?i?1i解得2?1?m?2∴Ai?a2i?1?a2i?2?(n?1)?10nn*?2?4?3?2?4(n?N). 可得Tn??nn?2?4?3?2?4(n?2)