于是AC?BC?4?m.
在Rt△AOC中,由勾股定理,得AC?OC?OA, 即?4?m??m?2,解得m?2222223. 2B y ?3??点C的坐标为?0,?.……………4分
?2?(Ⅱ)如图②,折叠后点B落在OA边上的点为B?, 则△B?CD≌△BCD. 由题设OB??x,OC?y, 则B?C?BC?OB?OC?4?y,
在Rt△B?OC中,由勾股定理,得B?C?OC?OB?.
222O A x ??4?y??y2?x2,
12··························································································· 6分 x?2 ·
8由点B?在边OA上,有0≤x≤2,
1? 解析式y??x2?2?0≤x≤2?为所求.
8即y??2? 当0≤x≤2时,y随x的增大而减小,
3···································································· 7分 ?y的取值范围为≤y≤2. ·
2(Ⅲ)如图③,折叠后点B落在OA边上的点为B??,且B??D∥OB. 则?OCB????CB??D. 又?CBD??CB??D,??OCB????CBD,有CB??∥BA. ?Rt△COB??∽Rt△BOA. OB??OC有,得OC?2OB??. ·································································· 9分 ?OAOB在Rt△B??OC中,
设OB???x0?x?0?,则OC?2x0. 由(Ⅱ)的结论,得2x0??12x0?2, 8解得x0??8?45.x0?0,?x0??8?45. ?点C的坐标为0,85?16. ··································································· 10分
12(09太原)问题解决
如图(1),将正方形纸片ABCD折叠,使点B落在CD边上一点E(不与点
A M F D
?? 46
E
B
N
图(1)
C
C,D重合),压平后得到折痕MN.当
CE1AM的值. ?时,求
CD2BN 方法指导:
AM 为了求得的值,可先求BN、AM的长,不妨设:AB=2
BN 类比归纳
CE1AMCE1AM则的值等于 ;若则的值等于 ;?,?,CD3BNCD4BNCE1AM若的值等于 .(用含n的式子表示) ?(n为整数),则CDnBN在图(1)中,若
联系拓广
如图(2),将矩形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得
AB1CE1AM则的值等于 .(用含m,n的式子表示) ??m?1?,?,BCmCDnBNF 解:方法一:如图(1-1),连接BM,EM,BE.
到折痕MN,设
由题设,得四边形ABNM和四边形FENM关于直线MN对称. ∴MN垂直平分BE.∴BM?EM,BN?EN.……………1分
∵四边形ABCD是正方形,∴?A??D??C?90°,AB?BC?CD?DA?2. ∵
A
M D E
CE1设BN?x,则NE?x, ?,?CE?DE?1.NC?2?x.CD2222B
在Rt△CNE中,NE?CN?CE.
N 图(2)
C
55,即BN?.…………3分 44在Rt△ABM和在Rt△DEM中, AM2?AB2?BM2, DM2?DE2?EM2,
2222∴AM?AB?DM?DE.…………5分
2222设AM?y,则DM?2?y,∴y?2??2?y??1.
11解得y?,即AM?.…………6分
44AM1∴…………7分 ?.BN55方法二:同方法一,BN?.…………3分
4如图(1-2),过点N做NG∥CD,交AD于点G,连接BE.
∵AD∥BC,∴四边形GDCN是平行四边形. ∴NG?CD?BC.
5 同理,四边形ABNG也是平行四边形.∴AG?BN?.
4 ∵MN?BE, ??EBC??BNM?90°. NG?BC,??MNG??BNM?90°,??EBC??MNG. 在△BCE与△NGM中
∴x??2?x??1.解得x?222A M F D
E
B
N
图(1-1) F G M A C
D
E
B
C N 图(1-2)
47