好文档 - 专业文书写作范文服务资料分享网站

通信原理实验

天下 分享 时间: 加入收藏 我要投稿 点赞

通信原理实验报告

学院:信息工程学院

专业:电子信息科学与技术

学号:

姓名:

实验一 抽样定理实验

一、实验目的

1、 了解抽样定理在通信系统中的重要性。 2、 掌握自然抽样及平顶抽样的实现方法。 3、 理解低通采样定理的原理。 4、 理解实际的抽样系统。

5、 理解低通滤波器的幅频特性对抽样信号恢复的影响。 6、 理解低通滤波器的相频特性对抽样信号恢复的影响。 7、 理解带通采样定理的原理。

二、实验器材

1、 主控&信号源、3号模块 各一块 2、 双踪示波器 一台 3、 连接线 若干

三、实验原理

1、实验原理框图

平顶抽样S1自然抽样A-out抽样脉冲抽样输出LPF-INLPFLPF-OUTmusic信号源被抽样信号保持电路抗混叠滤波器抽样电路编码输入译码输出FIR/IIR3# 信源编译码模块FPGA数字滤波

图1-1 抽样定理实验框图

2、实验框图说明

抽样信号由抽样电路产生。将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。平顶抽样和自然抽样信号是通过开关S1切换输出的。

抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。这里滤波器可以选用抗混叠滤波器(8阶3.4kHz的巴特沃斯低通滤波器)或FPGA数字滤波器(有FIR、IIR两种)。

反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。

要注意,这里的数字滤波器是借用的信源编译码部分的端口。在做本实验时与信源编译码的内容没有联系。

四、实验步骤

实验项目一 抽样信号观测及抽样定理验证

概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。

1、关电,按表格所示进行连线。

源端口 信号源:MUSIC 目标端口 模块3:TH1(被抽样信号) 信号源:A-OUT 模块3:TH3(抽样输出) 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。调节主控模块的W1使A-out输出峰峰值为3V。

3、此时实验系统初始状态为:被抽样信号MUSIC为幅度4V、频率3K+1K正弦合成波。抽样脉冲A-OUT为幅度3V、频率9KHz、占空比20%的方波。

4、实验操作及波形观测。

(1)观测并记录自然抽样前后的信号波形:设置开关S1为“自然抽样”档位,用示波器分别观测MUSIC

主控&信号源

3#

连线说明 将被抽样信号送入抽样单元 提供抽样时钟 送入模拟低通滤波器 模块3:TH2(抽样脉冲) 模块3:TH5(LPF-IN) 和抽样输出。

3#

(2)观测并记录平顶抽样前后的信号波形:设置开关S1为“平顶抽样”档位,用示波器分别观测MUSIC

主控&信号源

3#

和抽样输出。

3#

3#

(3)观测并对比抽样恢复后信号与被抽样信号的波形:设置开关S1为“自然抽样”档位,用示波器观测MUSIC

主控&信号源

和LPF-OUT,以100Hz的步进减小A-OUT

3# 主控&信号源

的频

率,比较观测并思考在抽样脉冲频率多小的情况下恢复信号有失真。

(4)用频谱的角度验证抽样定理(选做):用示波器频谱功能观测并记录被抽样信号MUSIC和抽样输出频谱。以100Hz的步进减小抽样脉冲的频率,观测抽样输出以及恢复信号的频谱。(注意:示波器需要用250kSa/s采样率(即每秒采样点为250K),FFT缩放调节为×10)。

注:通过观测频谱可以看到当抽样脉冲小于2倍被抽样信号频率时,信号会产生混叠。 实验项目二 滤波器幅频特性对抽样信号恢复的影响

概述:该项目是通过改变不同抽样时钟频率,分别观测和绘制抗混叠低通滤波和fir数字滤波的幅频特性曲线,并比较抽样信号经这两种滤波器后的恢复效果,从而了解和探讨不同滤波器幅频特性对抽样信号恢复的影响。

1、测试抗混叠低通滤波器的幅频特性曲线。 (1)关电,按表格所示进行连线。

源端口 信号源:A-OUT 目标端口 模块3:TH5(LPF-IN) 连线说明 将信号送入模拟滤波器

(2)开电,设置主控模块,选择【信号源】→【输出波形】和【输出频率】,通过调节相应旋钮,使A-OUT

主控&信号源

输出频率5KHz、峰峰值为3V的正弦波。

(3)此时实验系统初始状态为:抗混叠低通滤波器的输入信号为频率5KHz、幅度3V的正弦波。

(4)实验操作及波形观测。

用示波器观测LPF-OUT。以100Hz步进减小A-OUTLPF-OUT的频谱。记入如下表格:

A-OUT频率/Hz 基频幅度/V 5K 4.5K 4k 3.5K 3.0K 0.524v 1.02v 2.02v 2.17v 3.14v 3#

3#

主控&信号源

输出频率,观测并记录

由上述表格数据,画出模拟低通滤波器幅频特性曲线。

思考:对于3.4KHz低通滤波器,为了更好的画出幅频特性曲线,我们可以如何调整信号源输入频率的步进值大小? 2、测试fir数字滤波器的幅频特性曲线。 (1)关电,按表格所示进行连线。

源端口 信号源:A-OUT 目标端口 模块3:TH13(编码输入) 连线说明 将信号送入数字滤波器 (2)开电,设置主控菜单:选择【主菜单】→【通信原理】→【抽样定理】→【FIR滤波器】。调节【信号源】,使A-out输出频率5KHz、峰峰值为3V的正弦波。

(3)此时实验系统初始状态为:fir滤波器的输入信号为频率5KHz、幅度3V的正弦波。 (4)实验操作及波形观测。

用示波器观测译码输出,以100Hz的步进减小A-OUT码输出的频谱。记入如下表格:

A_out的频率/Hz 5K 4.5k 4K 基频幅度/V 3.6mv 4.66mv 282mv 3#

3#

主控&信号源

的频率。观测并记录译

通信原理实验

通信原理实验报告学院:信息工程学院专业:电子信息科学与技术学号:姓名:实验一抽样定理实验一、实验目的1、了解抽样定理在通信系统中的重要
推荐度:
点击下载文档文档为doc格式
5yf7z0ddet2xn8u9whcj4n25q6nxtf004i8
领取福利

微信扫码领取福利

微信扫码分享