2.2平方根
教学目标: (一)教学知识点
1.了解数的算术平方根的概念,会用根号表示一个数的算术平方根.
2.了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根.
3.了解算术平方根的性质. (二)能力训练要求
1.加强概念形成过程的教学,提高学生的思维水平.
2.鼓励学生进行探索和交流,培养他们的创新意识和合作精神. (三)情感与价值观要求
1.让学生积极参与教学活动,培养他们对数学的好奇心和求知欲. 2.训练学生动脑、动口、动手能力. 教学重点:
了解算术平方根的概念、性质,会用根号表示一个正数的算术平方根. 教学难点:
了解算术平方根的概念、性质. 教学过程: Ⅰ.新课导入
上节课我们学习了无理数、了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如在a=2中,2是有理数,而a是无理数.在前面我们学过若x=a,则a叫x的平方,反过来x叫a的什么呢?本节课我们就来一起研究这个问题.
Ⅱ.讲授新课
[师]在讲新课之前,我们先回忆一下勾股定理,请同学们回答.
[生]勾股定理就是在直角三角形中两条直角边的平方和等于斜边的平方. [师]下面请大家根据勾股定量,结合图形完成填空. 根据下图填空
2
2
x2=_________y2=_________z2=_________w2=_________
[师]请大家思考后回答.
[生]x2=2,y2=3,z2=4,w2=5.
[师]请大家再分析一下,x,y,z,w中哪些是有理数?哪些是无理数? [生]x,y,w是无理数,z是有理数. [师]为什么呢?
[生]因为没有任何整数或分数的平方等于2,3,5,所以x,y,z不是有理数,而2=4,所以z=2.
[师]这位同学分析得非常正确,那么大家能不能把上图中的x,y,z,w表示出来呢?请大家仔细看书后回答.
[生]x=
,y=
,z=
,w=
.
”
2
[师]若一个正数x的平方等于a,即x2=a,则这个正数x就叫做a的算术平方根.记为“读作“根号a”.这就是算术平方根的定义.特别地规定0的算术平方根是0,即
[师]下面我们根据算术平方根的定义求一些数的算术平方根. [例1]求下列各数的算术平方根: (1)900;(2)1;(3)
;(4)14.
=30;
=0.
解:(1)因为302=900,所以900的算术平方根是30,即(2)因为12=1,所以1的算术平方根是1,即(3)因为
所以
的算术平方根是.
=1; ,即
;
(4)14的算术平方根是
通过上面的例题,大家思考一下,我们在求算术平方根时是借助于哪一种运算来求的? [生]是通过平方来求的.
[师]对.由此我们可以看出一个正数的平方和求算术平方根是互为逆运算.而且我们在例题中的步骤采取语言叙述和符号表示互相补充的做法,目的是让大家明白算术平方根的概念,以及从计算中进一步体会一个正数的平方和求算术平方根是互为逆运算.在以后的步骤中可以简化.
[例2]自由下落的物体的高度h(米)与下落时间t(秒)的关系为h=4.9t.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?
解:将h=19.6代入公式h=4.9t得
2
2
t2=4,所以t==2(秒)
即铁球到达地面需要2秒.
[师]下面大家再观察一下刚才咱们求出的算术平方根有什么特点. [生甲]算术平方根是整数或分数,即为有理数. [生乙]不对,那
是不是有理数?若是则是,分数还是整数?
[生丙]因为没有任何一个整数或分数的平方等于14,所以[师]大家的分析都有道理,我提示一下从符号方面考虑. [生甲]噢,算术平方根是正数,如
,2.
不是有理数,而是无理数.
[生乙]不对,还有零呢.正数的算术平方根是正数,零的算术平方根为零. [师]非常正确,那负数的算术平方根是否为负数呢?若(-2)=4.则=-2对吗?
[生甲]不对.因为算术平方根的定义是一个正数的x的平方等于a,这个正数x就叫做a的算术平方根,所以算术平方根不可能是负数.
[师]由此看来,定义中的a和x都为正数,即算术平方根是非负数,负数没有算术平方根.用式子表示为
(a≥0)为非负数,这是算术平方根的性质.
2
=-2对吗?或者
Ⅲ.课堂练习 (一)P32随堂练习1、2题. (二)补充练习. 一、填空题 1.若一个数的算术平方根是2.
,则这个数是_________.
的算术平方根是_________.
3.正数_________的平方为
2
的算术平方根为_________.
4.(-1.44)的算术平方根为_________. 5.
的算术平方根为_________,
=_________
二、求下列各数的算术平方根,并用符号表示出来: (1)(7.4)2;(2)(-3.9)2;(3)2.25;(4)2
Ⅳ.课时小结
本节课学习了算术平方根的概念,理解了求一个正数的平方和求算术平方根是互为逆运算,求一个非零数的算术平方根,以及算术平方根的性质,即算术平方根是非负数.
Ⅴ.课后作业 P33习题1、3. Ⅵ.活动与探究
1.一个正方形的面积变为原来的n倍时,它的边长变为原来的多少倍? 2.一个正方形的面积为原来的100倍时,它的边长变为原来的多少倍? 解:设原来的正方形边长为a,面积为S1,后来的正方形面积为S2. 1.S1=a2,S2=na2(∴后来的边长(
.
a)2
a)为原来边长的
倍.
2.S1=a2,S2=100a2=(10a)2
∴后来的边长10a为原来边长的10倍. 板书设计:
一、算术平方根的定义算术平方根的性质 二、举例 三、练习 四、作业 教学反思: 2.2 平方根(二)
教学目标: (一)教学知识点
1.了解平方根的概念、开平方的概念. 2.明确算术平方根与平方根的区别与联系. 3.进一步明确平方与开方是互为逆运算. (二)能力训练要求
1.加强概念形成过程的教学,让学生不仅掌握概念,而且知晓它的理论数据. 2.提倡学生进行自学,并能与同学互相交流与合作,变学会知识为会学知识. 3.培养学生的求同和求异思维,能从相似的事物中观察到PX 们的共同点和不同点. (三)情感与价值观要求
通过学生在学习中互相帮助、相互合作,并能对不同概念进行区分,培养大家的团队精神,以及认真仔细的学习态度,为学生将来走上社会而做准备,使他们能在工作中保持严谨的态度,正确处理好人际关系,成为各方面的佼佼者.
教学重点:
1.了解平方根、开平方的概念.
2.了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根.
3.了解平方根与算术平方根的区别与联系. 教学难点:
1.平方根与算术平方根的区别与联系.
2.负数没有平方根,即负数不能进行开平方运算的原因. 教学方法: 讨论比较法.
即主要靠大家讨论得出结论,同时对相似的概念进行比较.这样不仅能正确区分这些概念,还能使学生学得更扎实.
教学过程:
Ⅰ.创设问题情境,引入新课
上节课我们学习了算术平方根的概念,性质.知道若一个正数x的平方等于a,即x2=a.则x叫
a的算术平方根,记作x=
2
,而且也是非负数,比如正数2=4,则2叫4的算术平方根,4
2
叫2的平方,但是(-2)=4,则-2叫4的什么根呢?下面我们就来讨论这个问题.
Ⅱ.讲授新课
1.平方根、开平方的概念 [师]请大家先思考两个问题.
(1)9的算术平方根是3,也就是说,3的平方是9,还有其他的数,它的平方也是9吗?