2017年春国家开放大学“经济数学基础”任务4 参考答案
填空题必须手写答案后拍照上传! 若直接将提供的电子文档答案截图上传, 则成绩按0分计算!!!切记,切记!!
一、填空题 1.函数f(x)?4?x?21_________内是单调减少的. 答案:(1,在区间__________2)?(2,4]
ln(x?1)2. 函数y?3(x?1)的驻点是________,极值点是 ,它是极 值点. 答案:x?1,x?1,小
?p23.设某商品的需求函数为q(p)?10e,则需求弹性Ep? .答案:-p2
14.行列式D??11111?____________.答案:4
?1?1116??11??,
325. 设线性方程组AX?b,且A?0?1方程组有唯一解.答案:??1
??则t__________时,??00t?10??(二)单项选择题
1. 下列函数在指定区间(??,??)上单调增加的是( B ).
A.sinx B.e x C.x 2 D.3 – x
1. ,则 f?f(x)??( C )
x11A. B.2 C.x D.x2
xx2. 设f(x)?
3. 下列积分计算正确的是( A ).
x?x1e?eex?e?xdx?0 B.?dx?0 A.??1?1221C.
?1-1xsinxdx?0 D.?(x2?x3)dx?0
-114. 设线性方程组Am?nX?b有无穷多解的充分必要条件是( D ).
A.r(A)?r(A)?m B.r(A)?n C.m?n D.r(A)?r(A)?n
?x1?x2?a1?5. 设线性方程组?x2?x3?a2,则方程组有解的充分必要条件是( C ).
?x?2x?x?a233?1A.a1?a2?a3?0 B.a1?a2?a3?0 C.a1?a2?a3?0 D.?a1?a2?a3?0
解答题、经济应用题必须手写解题步骤后拍照上传! 若直接将提供的word文档答案截图上传,则成绩按0分计算!!!切记,切记!!
三、解答题
1.求解下列可分离变量的微分方程: (1) y??ex?y
解:
dy?exey dx?e?ydy??exdx ?e?y?ex?c
dyxex(2)?2
dx3y解:
2x3xxy?xe?e?c 3ydy?xedx??2. 求解下列一阶线性微分方程:
2y?x3 x2解:p(x)??,q(x)?x3
x(1)y??代入公式得
22dx???dx??3y=ex??xexdx?c??x2???x42 xdx?c??cx?2?(2)y??y?2xsin2x x解:
1p(x)??,q(x)?2xsin2x ,
x代入公式得y?e?xdx?1???2xsin2xe??xdx1?dx?c? ?elnx???2xsin2xe?dx?c
lnx?
1???x??2xsin2xdx?c??x?sin2xd2x?c?x(?cos2x?c)
x????3.求解下列微分方程的初值问题: (1) y??e2x?y,y(0)?0
解:
dy?e2xe?y dx?01eydy??e2xdx,ey?e2x?c,
2?101e?c,C=, 221x1e? 22把y(0)?0代入e所以,特解为:ey?x(2)xy??y?e?0,y(1)?0
1ex解:y??y?,
xx1exp(x)?,q(x)?,
xx代入公式得y?e?x?xdx?e?xdx11??e?xx??1?ex?ex?c?lnx?elnx, dx?c??e??edx?c????xdx?c??xxxx?????把y(1)?0代入y所以特解为:y??1x(e?c),C= -e , x1x(e?e) x4.求解下列线性方程组的一般解:
?2x3?x4?0?x1?(1)??x1?x2?3x3?2x4?0
?2x?x?5x?3x?0234?1解:
02?1?2?1??1?10?102?1????01?11???01?11?
A???11?32??????????2?15?3???0?11?1???0000??所以,方程的一般解为
?x1??2x3?x4(其中x3,x4是自由未知量) ??x2?x3?x4
?2x1?x2?x3?x4?1?(2)?x1?2x2?x3?4x4?2
?x?7x?4x?11x?5234?1解
:
11?4?2?11?12?142??12?1(2)?(1)?(?2)?(1),(2)?2?11??0?53?7(Ab)??12?14211????(3)?(1)?(?1)????7?17?4115???17?4115???05?316?10??12?142?5542??12?1??373?37?0?53?7?3??01?01???(2)?(?1)?(3)?(2)?(1)?(2)?(?2)?55555????000005?00000?0???000??164?x??x?x?34?1555(其中x,x是自由未知量)
?34373?x2?x3?x4?555?5.当?为何值时,线性方程组
2??3??3??4?5?3??5?0????x1?x2?5x3?4x4?2?2x?x?3x?x?1?1234 ?3x?2x?2x?3x?3234?1??7x1?5x2?9x3?10x4??有解,并求一般解。 解:
?1?2(Ab)???3??7?1?542?13?11?2?233?5?1(3)?(2)?(?1)??0(4)?(2)?(?2)0uuuuuuuuuuuuur???0
??1?1?5?(2)?(1)?(?2)?0113?(3)?(1)?(?3)???0113(4)?(1)?(?7)?r?0226?910??uuuuuuuuuuuuu??1?542??108?0113113?9?3?(1)?(2)???0000000?uuuuuuur??000??8??00042?9?3?9?3?18?5?900???????14?
?1??3??0????8?.当?=8有解,??x1??8x3?5x4?1?9x(其中?x??13xx3,x4是自由未知量)
234?36.a,b为何值时,方程组
??x1?x2?x3?1?x?1?x2?2x3?2 ?x1?3x2?ax3?b解:
?1?1?11?A???(2)?(1)?(?1)?1?1?11??1?1?11?22????13ab??(3)?(1)?(?1)?02?11??02??1??04a?1b??(3)?(2)?(?2)???00当a??3且b?3时,r(A)?r(A), 方程组无解; 当a??3时,r(A)?r(A)?3方程组有唯一解;
当a??3且b?3时,r(A)?r(A)?2?3方程组无穷多解。
四.经济应用问题
(1)设生产某种产品q个单位时的成本函数为:C(q)?100?0.25q2?6q(万元), 求:①当q?10时的总成本、平均成本和边际成本;
②当产量q为多少时,平均成本最小? 解:
?11??11?a?3b?3???