好文档 - 专业文书写作范文服务资料分享网站

新人教版九年级数学上册全册教案

天下 分享 时间: 加入收藏 我要投稿 点赞

《人教版九年级上册全书教案》

第二十一章 二次根式

教材内容

1.本单元教学的主要内容:

二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式. 2.本单元在教材中的地位和作用:

二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础. 教学目标

1.知识与技能

(1)理解二次根式的概念.

(2)理解a(a≥0)是一个非负数,(a)2=a(a≥0),a=a(a≥0). (3)掌握a2b=ab(a≥0,b≥0),ab=a2b;

2aaaa=(a≥0,b>0),=(a≥0,b>0).

bbbb (4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.

2.过程与方法

(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.?再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简. (2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,?并运用规定进行计算.

(3)利用逆向思维,?得出二次根式的乘(除)法规定的逆向等式并运用它进行化简. (4)通过分析前面的计算和化简结果,抓住它们的共同特点,?给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.

3.情感、态度与价值观

通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力. 教学重点

1.二次根式a(a≥0)的内涵.a(a≥0)是一个非负数;(a)2=a(a≥0);

- - 1 - -

a2=a(a≥0)?及其运用.

2.二次根式乘除法的规定及其运用. 3.最简二次根式的概念. 4.二次根式的加减运算. 教学难点

1.对a(a≥0)是一个非负数的理解;对等式(a)2=a(a≥0)及a=a(a≥0)的理解及应用.

2.二次根式的乘法、除法的条件限制.

3.利用最简二次根式的概念把一个二次根式化成最简二次根式. 教学关键

1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.

2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,?培养学生一丝不苟的科学精神. 单元课时划分

本单元教学时间约需11课时,具体分配如下: 21.1 二次根式 3课时 21.2 二次根式的乘法 3课时 21.3 二次根式的加减 3课时 教学活动、习题课、小结 2课时

221.1 二次根式

第一课时

教学内容

二次根式的概念及其运用 教学目标

理解二次根式的概念,并利用a(a≥0)的意义解答具体题目. 提出问题,根据问题给出概念,应用概念解决实际问题. 教学重难点关键

1.重点:形如a(a≥0)的式子叫做二次根式的概念; 2.难点与关键:利用“a(a≥0)”解决具体问题. 教学过程

- - 2 - -

一、复习引入

(学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数y=

3,那么它的图象在第一象限横、?纵坐标相等的点的坐x标是___________.

问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.

AB

问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________. 老师点评:

问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x=3,所以所求点的坐标(3,3). 问题2:由勾股定理得AB=10 C 问题3:由方差的概念得S= 二、探索新知 很明显3、10、4. 64,都是一些正数的算术平方根.像这样一些正数的算术平方6根的式子,我们就把它称二次根式.因此,一般地,我们把形如a(a≥0)?的式子叫做二次根式,“”称为二次根号.

(学生活动)议一议: 1.-1有算术平方根吗? 2.0的算术平方根是多少?

- - 3 - -

3.当a<0,a有意义吗? 老师点评:(略)

例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、1、x(x>0)、x0、42、-2、

1、x?y(x≥0,y?≥0). x?y”;第二,被开方数是正数

分析:二次根式应满足两个条件:第一,有二次根号“或0.

解:二次根式有:2、x(x>0)、0、-2、x?y(x≥0,y≥0);不是二次根式的有:33、114、2、.

x?yx 例2.当x是多少时,3x?1在实数范围内有意义?

分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,?3x?1才能有意义.

解:由3x-1≥0,得:x≥ 当x≥

1 31时,3x?1在实数范围内有意义. 3 三、巩固练习

教材P练习1、2、3. 四、应用拓展

例3.当x是多少时,2x?3+ 分析:要使2x?3+1在实数范围内有意义? x?11在实数范围内有意义,必须同时满足2x?3中的≥0和x?11中的x+1≠0. x?1 解:依题意,得??2x?3?0

?x?1?0

- - 4 - -

由①得:x≥-

32 由②得:x≠-1 当x≥-

32且x≠-1时,2x?3+1x?1在实数范围内有意义. 例4(1)已知y=2?x+x?2+5,求

xy的值.(答案:2) (2)若a?1+b?1=0,求a2004+b2004的值.(答案:

25) 五、归纳小结(学生活动,老师点评) 本节课要掌握:

1.形如a(a≥0)的式子叫做二次根式,“”称为二次根号.

2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数. 六、布置作业

1.教材P8复习巩固1、综合应用5.

2.选用课时作业设计. 3.课后作业:《同步训练》

第一课时作业设计 一、选择题

1.下列式子中,是二次根式的是( )

A.-7 B.37 C.x D.x 2.下列式子中,不是二次根式的是( ) A.4 B.16 C.8 D.

1x 3.已知一个正方形的面积是5,那么它的边长是( ) A.5 B.5 C.

15 D.以上皆不对 二、填空题

1.形如________的式子叫做二次根式. 2.面积为a的正方形的边长为________. 3.负数________平方根. 三、综合提高题

1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,

- - 5 - -

底面应

?

新人教版九年级数学上册全册教案

《人教版九年级上册全书教案》第二十一章二次根式教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章
推荐度:
点击下载文档文档为doc格式
5x0aw1aqzz721es5igw5
领取福利

微信扫码领取福利

微信扫码分享