所以?x???3?11??, ???,?6?26?1?7????5?有唯一解,所以?x???或者?x??或者?x??, 2666666??7?①当??0时,?????,即???4,
366因为f(x)?又因为???5,所以???5或???4;
?1?,不满足题意, 625???11?③当??0时,,即2???5, ?????6366②当??0时,f(x)?sin所以??2或??3或??4或??5,
综上?的值为?5,?4,2,3,4,5共有6个满足题意, 故选D.
二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】
2 3?2????2)?,?sin(??)?sin[?(??)]?cos(??)?, 4342443【解析】cos(??故答案为
2. 32 214.【答案】1?【解析】sinx?cosx??sin(x?),作出三个函数在一个周期内的图象如图:
42
则f(x)对应的图象为三个图象中最上面的部分. 则由图象可知当x?0时,函数f(x)取得最大值1,
当x?25?时,函数f(x)取得最小值?,
2422,故答案为1?. 22故最大值和最小值之和为1?15.【答案】???,????43?? 3?【解析】函数f(x)?sin(?x?)?3(??0)的最小正周期为
?32????,
????2,?函数f(x)?sin(2x?)?3.
3若?x??0,?,则2x???,??,?sin(2x?)??0,1?,
3?3?3?3?????????????f(x)????3,1?3?,f(x)?1???3?1,?3?,
则不等式[f(x)?1]?a[f(x)?1]?1?0(a?R)恒成立. 令t?f(x)?1???3?1,?3?,则g(t)?t?at?1?0.
2??2?g(?3?1)?(?3?1)2?a(?3?1)?1?0①,
且g(?3)?(?3)?a(?3)?1?0②, 解①求得a??2435?231?3,解②求得a??. ??323?1综合可得,实数a的取值范围是???,?????43?43?,故答案为??,????. ?3?3??16.【答案】?1,?
3【解析】Qf(x)?sin2x?3(2cos2x?1)?sin2x?3cos2x?2sin(2x?), 当x??0,?,2x???,,?sin(2x?)??,1?,?f(x)??1,2?. ?43?2?336????对
于
?4????3??????5????1??g(x)?mcos(2x?)?2m?3(m?0)6,2x?????????,?6?63?,
??m??3m?mcos(2x?)??,m?,?g(x)????3,3?m?.
6?2??2?由于对所有的x2??0,?总存在x1??0,?,使得f(x1)?g(x2)成立,
44??????????可得???3m??3,3?m???1,2?, ?2?故有3?m?2,?3m?4??3?1,解得实数m的取值范围是?1,?. 2?3?故答案为?1,?.
3
三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】(1)??4???54;(2). 65【解析】(1)因为角?的终边过点P(?3,4),
434,cos???,tan???, 5534?tan?tan?5所以??3??.
?46sin(???)?cos(??)2sin?2?25334(2)因为?为第三象限角,且tan??,所以sin???,cos???.
455247由(1)知,sin2??2sin?cos???,cos2??2cos2??1??
2525742434所以cos(2???)?cos2?cos??sin2?sin????(?)??(?)?.
2552555所以sin??18.【答案】(1)?【解析】 (1)Qf(?)?733;(2)?;(3). 4510sin(3???)cos(5???)sin?(?cos?)?2??sin?cos?, 23??cos2(??)?sin2(??)sin??cos?22??133cos?????. 66224?f()??sin?6
(2)Qtan??3,?f(?)??sin?cos??(3)Qf(?)??sin?cos??tan?3. ???sin2??cos2?1?tan2?1012??sin?cos?,??(0,?), 25?sin?cos??0,可得sin??0,cos??0,
?sin??cos??(sin??cos?)2?1?2sin?cos??1?2?127?. 25519.【答案】(1)f(x)?sin(2x?【解析】由题意得,T?(1)由于f(0)?55?f(x)?;(2),f(x)min?1?3. )max262????,所以??2,f(x)?sin(2x??).
11,则sin??, 225??5?又0????,则??,或??(舍去),故f(x)?sin(2x?).
666(2)由于y?f(x)?sin(2x??)是偶函数,则f(0)?sin???1,
??,f(x)?sin(2x?)?cos2x, 22?将y?f(x)?cos2x的图象向左平移个单位长度,
6?得到y?g(x)?cos(2x?)的图象,
3又0????,所以??故
x?13y?2[f()]2?g(x)?2cos2x?cos(2x?)?1?cos2x?cos2x?sin2x23223331??1?cos2x?sin2x?1?3(cos2x?sin2x)?1?3cos(2x?).
22226因为x?[0,],所以f(x)max?2??7?, ?2x??66655??f(0)?,f(x)min?f()?1?3.
2123??(2)x??1时,h(x)取得最小值?;x?1时,x?);
23320.【答案】(1)f(x)?sin(h(x)取得最大值3.
uuur2?1?1?|OQ|?2,?A?1,T?【解析】(1)QP点坐标为?,1?,?4(2?)?6,
?2?2?
??,则f(x)?sin(x??).
331????由f()?sin(??)?1,0???,得???,
26266???即??,得f(x)?sin(x?).
333则??(2)将函数y?f(x)图象向右平移1个单位后得到函数y?g(x)的图象, 则g(x)?f(x?1)?sin(所以
????x??)?sinx, 3333???1?3??h(x)?f(x)?g(x)?sin(x?)?sinx?sinx?cosx?sinx
333232333?3?3?1????sinx?cosx?3(sinx?cosx)?3sin(x?), 2323232336Qx???1,2?,?????5??x????,?, 36?66??当
当
3???; x???,即x??1时,h(x)取得最小值?2366???x??,即x?1时,h(x)取得最大值3. 362?21.【答案】(1)f(x)?sin(2x?);(2)?5?m??26.
6【解析】(1)根据f(x)?Asin(?x??)的部分图象知,A?1,
T2??????, 2362?T??,???2??2, T???由“五点法画图”知,2????,解得??,
626??函数f(x)?sin(2x?).
6???(2)Qf(x?)?sin(2x??)?sin2x,
1266?2?2?函数F(x)?3[f(x?)]?mf(x?)?2?3sin(2x)?msin2x?2,
1212在区间?0,?上有四个不同零点,
2?????