故选D. 4.【答案】B
【解析】函数f(x)?3sin?x?cos?x?2sin(?x?),
?61?3k,k?Z.
3621?1又因为0???3,所以k?0,??,所以f(x)?2sin(x?).
2621??4?令x???k?,k?Z,得x??2k?,k?Z, 26234?2?所以函数f(x)时,对称轴为直线x?,当k??1时,对称轴为直线x??.
334?2?要得到一个偶函数的图象,可将f(x)的图象向左平移个单位长度或向右平移个单位
33由已知f()?0,可知
?3?????k?,k?Z,解得??长度. 故选B. 5.【答案】C
【解析】由图象知A?2,即f(x)?2sin(?x??), 由图象知函数的周期满足
T5?5?,即T?,故A错误, ?2423, 2Qf(0)?2sin??3,?sin??由图象知图象向左平移超过了则f(x)?2sin(?x?T5?5?2?,即??,即??, ?48832?), 35?2?3?2由五点对应法得,得??, ???432322?即f(x)?2sin(x?),
3322?2则f(x??)?2sin[(x??)?]?2sinx是奇函数,故B错误,
33322??若?1?x?1,则0?x??,此时f(x)为增函数,故C正确,
3323?T5?3?2?若函数关于点(,0)对称,则?,即T?2?, ??444442??3?矛盾,故D错误, 如函数的周期T?23故选C.
6.【答案】C 【解析】f(x)?2cos?x2sin(?x??x?x?x ?)?3sin2?sincos23222?2cos?x1?x3?x1?cos?x1(sin?cos)?3??sin?x 2222222sin?cos?x2?x2?3cos2?x2?331?cos?x?sin?x 22211?cos?x331?sin?x?3???cos?x?sin?x 22222??sin?x?3cos?x?2sin(?x?),
3Q在?0,?上,?x????,????,f(x)单调,?????,??.
3?333?3322?3?????????????5Qf(0)?f()?0,?2sin(?)?2sin(??)?0,sin(?3?3?3?3???3?)?, 332????5?????,????2. 233325综上,2???.
2?
将函数f(x)的图象向左平移?(??0)个单位长度后,可得y?2sin(?x????)的图象, 再根据y?2sin(?x????)为偶函数,?????当???3?3??5?, ?,????326?5时,?取得最小值为,
32故选C. 7.【答案】D
【解析】由f(x)?g(x),得sin(?x??)?cos(?x??), 即tan(?x??)?1,即?x???k???, 4???,x?4?????????4当k?0时,x1?4;当k?1时,x2?,
则?x?k??k?????4,
??
Q相邻两个交点的横坐标之差的绝对值为
?, 2???x2?x1?????????44???, ???2即??2,则f(x)?sin(2x??),
当x???????,?时,函数f(x)的图象恒在x轴的上方,即此时f(x)?0,恒成立, ?64?由f(x)?0,得2k??2x???2k???,k?Z, 得k???2?x?k???2??, 2????????k?????k????2k???????2?2663则?,得?,得?, ?k??????????k??????2k???????224?24?2????????3当k?0时,得?,得???,
32??????2则?的取值范围是?,?,故选D.
328.【答案】C
【解析】由题意知函数f(x)?sin(?x??)(??0,|?|????????), 2??为y?f(x)图象的对称轴,x??为f(x)的零点, 442n?12?????,n?Z,???2n?1.
4?2??f(x)在区间(?,)上有最小值无最大值,
1224???2???周期T?(?)?,即?,???16.
24128?8x??要求?的最大值,结合选项,先检验??15,
当??15时,由题意可得????15???k?,???, 44?4????3?3??此时f(x),)上,15x????,?,
4?28?1224函数为y?f(x)?sin(15x?),在区间(?
在x???时取得最小值, 2∴??15满足题意,则?的最大值为15,故选C. 9.【答案】B
【解析】Q?1?3cos(2x?)?3,???31??cos(2x?)?1, 3311??????cos(2x?)?1.
233?2??2?则满足上述条件的2x?的最大范围是2k???2x???2k?(k?Z),
3333????2?即k???x??k?(k?Z),?(b?a)max???,排除C,D.
26623??2?则满足上述条件的2x?的最小范围是2k??2x???2k?(k?Z),
333?????即k???x??k?(k?Z),?(b?a)min???.排除A,
66663?故b?a的值可能是.
2故选B. 10.【答案】D
【解析】当对称轴不在[t?数f(x)在[t???函数f(x)在[t?,t],t?R上单调,不妨设函,t],t?R上时,
44?,t],t?R上单调递增, 4??设函数f(x)?sin(2x?)在区间[t?,t],t?R上的最大值与最小值之差为g(t),
124????则g(t)?f(t)?f(t?)?sin(2t?)?sin[2(t?)?)412412
?sin(2t????)?cos(2t?)?2sin(2t?)?2, 12123?,t],t?R上时,不妨设对称轴上取得最大值1,则函数f(x)的最小4当对称轴在区间[t?值为f(t??)或f(t), 4?,t],t?R中点时,g(t)有最小值, 4显然当对称轴经过区间[t??(t?)?t???4不妨设2????2k?,k?Z,则t??k?,k?Z,
32122??3?2f(t)?sin[2(?k?)?]?sin(?2k?)?,
31242
?g(t)的最小值为1?2, 2综上,函数f(x)?sin(2x???)在区间[t?,t],t?R上的最大值与最小值之差的取值范124??2围是?1?,2?,
2??故选D. 11.【答案】C
【解析】Q函数f(x)?sin(?x??)(??0,|?|???),x??为y?f(x)图象的对称轴,
42?为f(x)的零点, 4?????2??f(x)在区间(,)上单调,?周期T?2?(?)?,即?,???12.
1266126?6??2n?12??Qx??为y?f(x)图象的对称轴,x?为f(x)的零点,???,n?Z,
444?2x????2n?1.
???11???k?,??, 44?函数为y?f(x)?sin(11x?),
4当??11时,由题意可得在区间(??????7?25??f(x),在区间,)上,11x???,(,)上不单调,???11. ?4?612?126126???9???k?,???, 44?函数为y?f(x)?sin(9x?),
4当??9时,由题意可得在区间(???????5??,)上,9x???,?,f(x)在区间(,)上单调,满足条件,
4?24?126126则?的最大值为9, 故选C. 12.【答案】D
【解析】Qx?(0,),f(x)?所以|?x??31有唯一解, 2???|?2?,即||?2?,解得|?|?6, 63