ºÃÎĵµ - רҵÎÄÊéд×÷·¶ÎÄ·þÎñ×ÊÁÏ·ÖÏíÍøÕ¾

ɽ¶«Ê¡µÂÖÝÊÐÀÖÁêÒ»ÖÐ2013-2014ѧÄê¸ßÒ»ÉÏѧÆÚÆÚÖÐÊýѧÊÔÌâ

ÓÉ ÌìÏ ·ÖÏí ʱ¼ä£º ¼ÓÈëÊÕ²Ø ÎÒҪͶ¸å µãÔÞ

ɽ¶«Ê¡µÂÖÝÊÐÀÖÁêÒ»ÖÐ 2013-2014ѧÄê¸ßÒ»ÉÏѧÆÚÆÚÖÐ

2013-11-03

×¢ÒâÊÂÏ

1?±¾ÊÔÌâ·ÖµÚI¾íºÍµÚn¾íÁ½²¿·Ö¡£µÚI¾íΪѡÔñÌ⣬ ¹²150·Ö¡£Ê±¼ä120·ÖÖÓ¡£

2?´ðµÚI¾íÇ°£¬¿¼ÉúÎñ±Ø½«×Ô¼ºµÄÐÕÃû¡¢°à¼¶¡¢Ñ§ºÅ¡¢×ùºÅÌîдÔÚÏàӦλÖᣠµÚI¾í

£¨60·Ö£©

Ò»¡¢Ñ¡ÔñÌ⣨±¾´óÌâ¹² 12¸öСÌ⣬ÿÌâ5·Ö£¬¹²60·Ö£»ÔÚÿ¸öСÌâ¸ø³öµÄËĸöÑ¡ÏîÖУ¬Ö» ÓÐÒ»Ïî·ûºÏÒªÇó¡££©

[?ÒÑÖª¼¯ºÏ u ={0,2,4,6,8,10} , A ={2,4, 6} , B ={2}£¬Ôò£¨CUA£©UBÊÇ£¨ £©

A.

60·Ö£»µÚn¾íΪ·ÇÑ¡ÔñÌ⣬90·Ö£¬

{0,2,8,10}

B

.{2, 4,6} C.{0, 8,10} D. *

£¨x, yf2f2,12?É裩ÔÚÓ³ÉäϵÄÏóÊÇ£¨x?y, X-2y£©£¬ÔòÔÚÏ£¬Ï󣨣©µÄÔ­ÏóÊÇ£¨

A. ( 1, 5)

B. (1 , 4)

C. £¨0, 4£©

D. £¨4, 0£©

£©

5.º¯Êý f (x) =ax2+2 (a-1) x+2 ÔÚÇø¼ä(

-g, 4]ÉÏΪ¼õº¯Êý£¬ÔòaµÄÈ¡Öµ·¶Î§Îª£¨

1

B. 0 v a<

£¨Ê®£©

5

0 v av

C.(1,2)

5

D. a>

5

1 3

2 2

B.

(1

,¡£)

D .(3, 2)

FÁÐËÄ×éÖУ¬

f£¨x£©Óëg£¨x£©±íʾͬһº¯ÊýµÄÊÇ

£¨

)

f (x) = X g(x) =Qx2

3

2

g(x) = (Vx)

B .() = X,

fx

f (X) =x

¡ö ?

2

g(x^ ¡ª

x

D .

f(x

)=

¡ö¡ö¡ö X g(x)= 0) ¡¢Ò» x,

'x,(x À¼

(x < 0)

0.6 0 6

2

b = log? , c = 2 .Ö®¼äµÄ´óС¹ØϵÊÇ

c. b^avc

D. bvcva

a =06A. 6.Èý¸öÊý-A. avcvb

3.

B. avbvc

7.ÈôÄ»º¯Êý

f(x) f(x

(3,1)

9

)

)µÄͼÏó¾­¹ýµã £¬ÔòÆ䶨ÒåÓòΪ(

4ÒÑÖª

f

£¨£©=4 V ͼÏó¾­¹ý¶¨µã

x

P£¬ÔòµãPµÄ×ø±êÊÇ£¨

1

)

A.{x| R,x >0} B.{X|X€ R,X ¡ê0}

c{x|x^ R

ÇÒxp

D. R

2

2

8?É躯Êý

y

¶þ

lg

(X

_5x

3

)µÄ¶¨ÒåÓòΪM ,º¯Êýy = lg(x - 5) lg xµÄ¶¨ÒåÓòΪN£¬Ôò()

µ±

10.ÒÑÖª

f(x)

ÊǶ¨ÒåÔÚ(-, 3)ÉϵÄÆ溯Êý,

0

£º£º£º X £º£º£º

3

ʱ£¬(X)µÄͼÏóÈçͼËùʾ£¬ÄÇô²»

f

µÈʽxf(x)

£º£º£º0µÄ½â¼¯ÊÇ( )

A. (_3,¡ª1)U(0,1)U(1,3) B. (-1, 0)U(0,1) C. (-3, -1)U(0,1) D. (0,1)U(1,3)

A. M U N = R

B. M = N

C.M ¶þ N

D. M …[ N

'(3 -a)x -a,

(XC)

f(x)

=¡ö:

x

9.ÒÑÖª

Jog a

(xA1) ÊÇRÉϵÄÔöº¯Êý£¬ÄÇô aµÄÈ¡Öµ·¶Î§ÊÇ(

_

3 J I-, 3 i

AJ2د

B.(

1,3

) C.(

0, 1

)

D. (1,´ú)

11Èôa¸¼\Ôòº¯Êýf

X¶þx-a x-b ? x-b x-c x-c x-aµÄÁ½¸öÁãµã·Ö±ð

λÓÚÇø¼ä()

A.(a,b ±â(b,c)ÄÚ

B.(^,a )ºÍ(a,b )ÄÚ

C.(b,c )ºÍ(C,À¬)ÄÚ D.3a

)ºÍ(Ê®)ÄÚ

12.

f(x)

Âú×ã¶ÔÈÎÒâµÄʵÊýa,b¶¼ÓÐ

f(a

ʮb)=

f(a)

Ú¦(ÃóÇÒf

(1

)= 2

£¬

f(2) . f (4) , f( 6)

. f(2016) _ Ôò f(1) f(3) f(5)

f(2015)()

A.1006 B. 2016

C.2013

D. 1008

µÚn¾í

(·ÇÑ¡ÔñÌâ

¹²90·Ö)

×¢ÒâÊÂÏ

1.µÚn¾í°üÀ¨Ìî¿ÕÌâºÍ½â´ðÌâ¹²Á½¸ö´óÌâ .

2 ?µÚn¾íËùÓÐÌâÄ¿µÄ´ð°¸¿¼ÉúÐèÓúÚÉ«Ç©×ֱʴðÔÚ

Êýѧ¡±´ðÌ⿨ָ¶¨µÄλÖÃ.

¶þ¡¢Ìî¿ÕÌ⣺±¾´óÌâ¹² 4¸öСÌ⣬ÿСÌâ4·Ö£¬¹²16·Ö.

13. Èôº¯Êý

f (2x)

µÄ¶¨ÒåÓòÊÇ£Û-2 , 2£Ý,Ôòº¯Êýy=f (x+1)µÄ¶¨ÒåÓòÊÇ

14. ÒÑÖªf (x) =ax2+bx+3a+bÊÇżº¯Êý£¬ÇÒÆ䶨ÒåÓòΪ£Ûa-1, 2a£Ý,±´U a=

, b=

3

)

ɽ¶«Ê¡µÂÖÝÊÐÀÖÁêÒ»ÖÐ2013-2014ѧÄê¸ßÒ»ÉÏѧÆÚÆÚÖÐÊýѧÊÔÌâ

ɽ¶«Ê¡µÂÖÝÊÐÀÖÁêÒ»ÖÐ2013-2014ѧÄê¸ßÒ»ÉÏѧÆÚÆÚÖÐ2013-11-03×¢ÒâÊÂÏ1?±¾ÊÔÌâ·ÖµÚI¾íºÍµÚn¾íÁ½²¿·Ö¡£µÚI¾íΪѡÔñÌ⣬¹²150·Ö¡£Ê±¼ä120·ÖÖÓ¡£2?´ðµÚI¾íÇ°£¬¿¼ÉúÎñ±Ø½«×Ô¼ºµÄÐÕÃû¡¢°à¼¶¡¢Ñ§ºÅ¡¢×ùºÅÌîдÔÚÏàӦλÖᣵÚI¾í£¨60·Ö£©Ò»¡¢Ñ¡ÔñÌ⣨±¾´óÌâ¹²12¸öСÌ⣬ÿÌâ5·Ö
ÍƼö¶È£º
µã»÷ÏÂÔØÎĵµÎĵµÎªdoc¸ñʽ
5vmij5kt563y3j84vsq02xzhu2kzn0009s8
ÁìÈ¡¸£Àû

΢ÐÅɨÂëÁìÈ¡¸£Àû

΢ÐÅɨÂë·ÖÏí