∴椭圆的标准方程为
x24?y23?1. 10.【答案】B
【解析】由f?x??2sinx?ax?1,得f??x??2cosx?a,
∵函数f?x??2sinx?ax?1的图象在点?0,1?处的切线方程为y?x?1, ∴f??0??2cos0?a?2?a?1,解得a?1. 11.【答案】C 【解析】Qtan????2??????2cos??????, ∴cot???2cos?,∴cos??0或sin???12, 当cos??0时,sin???1,cos2??1?2sin2??1?2??1;
当sin???112时,cos2??1?2sin2??1?2?14?2, 综上,cos2?的值为?1或12.
12.【答案】D
【解析】设双曲线C的左焦点为F1,连接AF1,BF1, 由对称性可知四边形AF1BF2是平行四边形, ∴S△AF1F?S?2△AF2B,?F1AF2?3,
设AF222?1?r1,AF2?r2,则4c?r1?r2?2r1r2?cos3, 又r1?r2?2a,故r1r2?4b2?16,∴S△AF1F2?12rr?12?sin3?43, 则△AF2B的面积为43.
第Ⅱ卷
二、填空题:本大题共4小题,每小题5分. 13.【答案】?6
?x?y?2?【解析】由约束条件?0?x?2y?2?0作出可行域如图,
??2x?y?2?0
化目标函数z?x?3y为y?13x?z3, 由图可知,当直线y?13x?z3过A?0,2?时,z有最小值为?6.
14.【答案】②
【解析】根据题意,抛掷一枚骰子10次,若结果10次都为六点, 若这枚骰子质地均匀,这种结果可能出现,但是一个小概率事件; 故①③错误,②正确; 故答案为②. 15.【答案】72
【解析】∵bcosCccosB?1?cos2C1?cos2B,可得sinBcosCsinCcosB?2cos2C2cos2B,可得sinBsinC?cosCcosB,可得sin2B?sin2C, ∴B?C,或B?C??2, 又∵cosA?13,∴B?C,可得b?c, ∴由余弦定理a2?b2?c2?2bccosA,可得2b2?2b23?28,可得b?c?21, ∴S1△ABC?2bcsinA?72. 16.【答案】18
【解析】根据题意,PA?平面ABC,AB?平面ABC,AC?平面ABC,
∴AB?PA,AC?PA,
又因为AB?PC,PCIPA?P,所以AB?平面PAC, 又因为AC?平面PAC,
∴AB?AC,即AB,AC,PA两两垂直,
将三棱锥还原为如图的长方体,设PA?a,AB?b,AC?c, 则长方体的外接球即为原三棱锥的外接球,
所以长方体的体对角线为外接球半径的二倍,即a2?b2?c2?2?3?6, 即a2?b2?c2?36.
S?S?S111△ABC△ABP?S△ACP?2ab?2ac?2bc
11?a2?2?ab?bc?ac???b2b2?c2a2?c2?12222??2?2?2???2?a?b?c??18, 当且仅当a?b?c?23时取得等号.
三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)12;(2)证明见解析.
【解析】(1)∵在正六棱锥P?ABCDEF中,底边长为2,侧棱与底面所成角为60?. 连结AD,过P作PO?底面ABCD,交AD于点O,
则AO?DO?2,?PAO?60?,∴PA?2AO?4,PO?42?22?23,
S?6???1?2?2?2?sin60??ABCDEF???63,
∴该六棱锥的体积V?13?S?PO?1ABCDEF3?63?23?12. (2)证明:连结CE,交AD于点O,连结PG, ∵DE?CD,AE?AD,∴AD?CE,O是CE中点, ∵PA?PC,∴PG?CE,
∵PGIAD?G,∴CE?平面PAD,
∵PA?平面PAD,∴PA?CE.
18.【答案】(1)an?21?n(n?N*);(2)
nn?1. 【解析】(1)a21?2a2?2a3?L?2n?1an?n,①
∴当n?2时,a2n?21?2a2?2a3?L?2an?1?n?1,②
①-②得,2n?1a1n?1,∴an?2n?1(n?2), 又∵n?1时,a11?n*1?1也成立,∴an?2n?1?2(n?N).
(2)由已知bn?1log?1?1?1?1,
2an?1?log2an?2??n???1?n?n?n?1?nn?1T???1?1n?1?1?2?????1?2?1?3???L???1n?n?n?1???1?n?1?n?1. 19.【答案】(1)
25;(2)5229;(3)s1?s2. 【解析】(1)记事件A为该年城镇人均住房建筑面积达到小康生活住房标准, 则P?A??25, 所以该年城镇人均住房建筑面积达到小康生活住房标准的概率为25. (2)随机抽取连续两年数据:共9次.
两年中城镇人均住房建筑面积增长不少于2平方米:共5次.
设“两年中城镇人均住房建筑面积增长不少于2平方米”为事件B,因此P?B??59. (3)s221?s2.
20.【答案】(1)x2?y2?45;(2)①证明见解析;②为定值,详见解析. 【解析】(1)因为Ax22,B1分别为椭圆C1:4?y2?1的右顶点和上顶点,则A2,B1坐标分别为?2,0?,?0,1?,可得直线A2B1的方程为x?2y?2,
115则原点O到直线AB22221的距离为d?,则圆1?22?5C2的半径r?d?5, 故圆C2242的标准方程为x?y?5. (2)①可设切线l:y?kx?b(k?0),P?x1,y1?,M?x2,y2?, 将直线PM方程代入椭圆C1可得??14?k2???x2?2kbx?b2??1?0, ??x1?x2??2kb?1由韦达定理得??4?k2?xxb2?1,
?12??1??k24??k2?1b2则y1y2??kx1?b??kx2?b??k2x1x2?kbx1?x2??b2?14, 4?k2又l与圆C2相切,可知原点O到l的距离d?bk25,整理得?12?2k2?54b2?1,
则y1?b2uuuruuuur1y2?1,所以OP?OM?x1x2?y1y2?0,故OP?OM.
4?k2②由OP?OM,知S1△OPM?2OPOM, (i)当直线OP的斜率不存在时,显然|OP|?1,|OM|?2,此时
1OP2?1OM2?54; (ii)当直线OP的斜率存在时,设OP:y?kx21x代入椭圆方程可得4?k21x2?1, 则x2?41?4k2,
1故OP2?x2?y2??1?k2?k21?1?x2?4?11?4k2,
14???1同理OM2??1??????2?k??1???4?k21?1?1?4k212?2,则11k21?451?4?k?4OP2?OM2?42?2?4, ?1?1?1?k1?4?1?k1???k?1?
综上可知:
OP2?OM2?4为定值.
21.【答案】(1)??0,1???e?;(2)证明见解析. 【解析】(1)f??x??lnx?1?aex,
由题意可知,lnx?1?aex?0在?0,???上有两个不同的实数根,
即
lnx?1ex?a,只需函数g?x??lnx?1ex和y?a图象有两个交点, 1ex??lnx?1?ex1?lnx?g??x??x?ex?2?x1ex,易知h?x??1x?lnx?1在?0,???上为减函数, 且h?1??0,
当x??0,1?时,g??x??0,g?x?为增函数;当x??1,???时,g??x??0,g?x?为减函数;所以g?x?max?g?1??1e,所以a?1e,
又当x?0,g?x????;x???,g?x??0, 要使f?x?在?0,???上存在两个极值点,则0?a?1e. 故a的取值范围为??0,1???e?.
(2)f?x??0?lnx?aexx?0,令F?x??lnx?aexx(x?0), 下面证明在当a?2e2时,F?x?的最大值小于0, 则F??x??1axex?aexx?x2?x?a?x?1?exx2, 当0?x?1时,F??x??0,F?x?单调递增,所以F?x??F?1???ae?0;
当x?1时,F??x???a?x?1??xx?x2?e?a?x?1??,
??
令G?x??ex?xa?x?1?,G??x??ex?122ae2?2a?x?1?2?0,G?2??e?a?a?0, 取m??1,2?,且使ma?m?1??m?ae2?e2,即1ae2?1,
G?m??em?ma?m?1??e2?e2?0.
因为G?m??G?2??0,故G?x?存在唯一零点x0??1,2?, 即F?x?有唯一的极值点且为极大值点x0??1,2?, 由G?x0??0,可得ex0?x0a?x,故F?x10??lnx0?,
0?1?x0?1因为F??x110??x??1?2?0,故F?x0?为?1,2?上的增函数, 0?x0所以F?xae20??F?2??ln2?2?ln2?1?0,所以F?x??0, 综上可知,当a?2e2时,总有f?x??0. 22.【答案】(1)l:??cos??sin???4,M:??2cos??2sin?;(2)相切. 【解析】(1)如图,
设l上任一点P??,??, 在△OAP中,由正弦定理
??4,即??cossin?4sin??3????sin???4,
?4????设圆M上任一点Q??,??,连接OM延长交圆于B, 在直角三角形OBQ中,??22cos???????4??,即??2cos??2sin?. (2)把l与M的极坐标方程化为直角坐标方程,l:x?y?4,
M:x2?y2?2x?2y?0,
∵圆心M?1,1?到l的距离d?1?1?42?2?r,∴l与M相切.
23.【答案】(1)48?????3,3??;(2)??3,?1?. 【解析】(1)当a?2时,f?x??x?6,即2x?2?x?6, 当x?0时,原不等式化为2?2x?x?6,得x??43,即?43?x?0; 当0?x?1时,原不等式化为2?2x?x?6,即x??4,即0?x?1; 当x?1时,原不等式化为2x?2?x?6,得x?83,即1?x?83, 综上,原不等式的解集为???4?3,8?3??. (2)因为x???2,?1?,所以f?x??x?1?3x?0,可化为2x?a??2x?1,所以2x?1?2x?a??2x?1,即4x?1?a??1对x???2,?1?恒成立, 则?3?a??1,所以a的取值范围是??3,?1?.