<图 16>
多重区块摒除
多重区块摒除是必需同时使用 2 个以上的区块摒除才能找到解的情况。下面这个例子就必需同时运用一个 九宫格对列的区块摒除及列对九宫格的区块摒除,才能找到 5 的行摒除解。请先解解看,给自己一点挑战, 然后再看后面的说明:
<图 17>
在本例中:由于(2, 5)、(4, 7)的摒除,使得数字 5 在中央九宫格中可填入的位置只剩下 (5, 4) 及 (5, 6), 符合了九宫格对列的区块摒除之条件,所以可把第 5 列其它区块填入数字 5 的可能性摒除掉。
<图 18>
同时:由于(2, 5)、(4, 7)及(3, 9)的行摒除,使得数字 5 在第 9 列中可填入的位置只剩下 (9, 1) 及 (9, 3), 符合了列对九宫格的区块摒除之条件,所以可把下左九宫格其它区块填入数字 5 的可能性摒除掉。
<图 19>
于是,利用第 5 列及下左九宫格的区块摒除,并配合(2, 5)、(4, 7)及(3, 9)的基础列摒除, 使得数字 5 在第 2 行中可填入的位置只剩下一个,意即找到第 2 行的行摒除解 5 了。
<图 20>
下面这个例子就更有趣了,请看< 图 21 >,目前谜面上一个数字 7 都没有,但尤怪要说: 在上左九宫格有一个九宫格摒除解 7,你是否能找出来呢?
<图 21>
首先,因为上右九宫格的数字 7 只能填在 (1, 7)~(1, 9) 这个区块,所以可以用九宫格对列的区块摒除, 将第 1 列其它区块填入数字 7 的可能性摒除掉。
<图 22>
当第一列的 (1, 1)~(1, 6) 填入数字 7 的可能性被摒除之后,因为上中九宫格的数字 7 就只能填在 (3, 4)~(3, 6) 这个区块,所以也可以用九宫格对列的区块摒除,将第 3 列其它区块填入数字 7 的 可能性摒除掉。于是,同时利用第 1 列及第 5 列的区块摒除,使得数字 7 在上左九宫格中可填入的 位置只剩下一个,意即找到上左九宫格的九宫格摒除解 7 了。
<图 23>
唯余解法 前言
唯余解法的原理十分简单,但是在实际的解题中,非常不容易辨认。
由于唯余解非常不容易辨认,所以一般的报章杂志及较大众化的数独网站,通常会将需要用到唯余解法的数独谜题 归入较高的级别。但另一种以候选数法为分级根据的网站,则会把这类的谜题放到较低的级别中。
唯余解详说
当数独谜题中的某一个宫格,因为所处的列、行及九宫格中,合计已出现过不同的 8 个数字,使得这个宫格所能填入 的数字,就只剩下那个还没出现过的数字时,我们称这个宫格有唯余解。
<图 1> (8, 6)出现唯余解了
<图 1>是出现唯余解的例子,请看 (8, 6)在的第 8 列,共出现了 2、8、1、6、5、3 六个数字; 接下来再看 (8, 6) 所在的第 6 行,共有 2、4、9 三个数字; 而 (8, 6) 所在的下中九宫格, 还包含了1、6、2 三个数字;所以 (8, 6) 所处的列、行及九宫格中,合计已出现过 1、2、3、4、5、6、8、9 共 8 个不同的数字;依照数独的填制规则,同一列、同一行及同一个九宫格中, 每一个数字都只能出现一次,所以 (8, 6) 就只能填入尚未出现过的数字 7 了;这时我们说: (8, 6) 有唯余解 7 。
<图 2>
如果你学过候选数法,应该可以看出来:直观法中的唯一解法及唯余解法,在候选数法中就是最简易的唯一候选数法, 但在直观法中,这两种方法是有着很大不同的。唯一解法的判定一样十分简单,某行、某列或某个九宫格已被填了 8 格时,就是唯一解法;但唯余解法却十分难以辨认,<图 2>中,使用基础摒除法已找不到解了,只好找寻唯余解, 而谜题中共有两个唯余解,请你找找看,看是否可以找到!
当你把鼠标移到图块上时,会显示出其中的一个:在 (1, 6) 有唯余解 3,另一个唯余解 5 则出现在在 (3, 1)。 不容易找到吧!所以一般的报章杂志及较大众化的数独网站,通常会将需要用到唯余解法的数独谜题归入较高的级别。