第五章 第4节
1.数列{an}中,an=
12 019
,若{an}的前n项和为,则项数n为( )
2 020n?n+1?
B.2 016 D.2 018
111
=-,
n?n+1?nn+1
A.2 019 C.2 017 解析:A [an=
111111n2 019
Sn=1-+-+…+-=1-==,所以n=2 019.]
223nn+1n+1n+12 020113n
2.+++…+n等于( ) 22822n-n-1A.
2n2n-n+1C.
2n2n1-n-2B.
2n2n1-n+2D.
2n++
123n
解析:B [法一:令Sn=+2+3+…+n,①
2222n-1112n
则Sn=2+3+…+n+n1,② 22222+
1??1?n?1-2n+1-n-2?2??n2?11111n①-②,得Sn=+2+3+…+n-n1=-n1.∴Sn=.故选B.
222222+1+2n21-2n1
法二:取n=1时,n=,代入各选项验证可知选B.]
22
?1?1121231234
3.已知数列{an}:,+,++,+++,…,那么数列{bn}=?aa?的前n项和
2334445555?nn+1?
为( )
1
A.4?1-n+1?
??
11B.4?2-n+1?
??
1
C.1-
n+1
解析:A [由题意知an=
11D.- 2n+1
1+2+3+…+nn123n1
+++…+==,bn==2n+1n+1n+1n+1n+1anan+1
1?1?111?1?1
1-?+4?-?+…+4?n-4?n-n+1?,所以b1+b2+…+bn=4??=?2??23????n+1?11??1??111
4?1-2+2-3+…+n-n+1?=4?1-n+1?.]
????
4.数列{an}的通项公式为an=(-1)n1·(4n-3),则它的前100项之和S100等于( ) A.200 B.-200 C.400 D.-400
解析:B [S100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.]
?1?
5.数列{an}满足a1=1,且对任意的n∈N*都有an+1=a1+an+n,则?a?的前100项和为( )
?n?
-
10099101A. B. C. 101100100200
D. 101
解析:D [数列{an}满足a1=1,且对任意的n∈N*都有an+1=a1+an+n, ∴an+1-an=1+n,∴an-an-1=n,
n?n+1?
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=n+(n-1)+…+2+1=,
212?1-1?∴==2n?, ann?n+1???n+1?
?1?
∴?a?的前100项和 ?n?
111111200
1-+-+…+-?=2?1-?=,故选D.] 2?100101??101?101?223
6.(2019·聊城市一模)已知数列{an}的前n项和公式为Sn=n2,若bn=2an,则数列{bn}的前n项和Tn=_________________________________________________________________.
解析:∵Sn=n2,① 当n=1时,S1=a1=1, 当n≥2时,Sn-1=(n-1)2,② 由①-②可得an=2n-1, 当n=1时也成立,∴an=2n-1,
2?1-4n?2∴bn=2an=2×4n-1,∴Tn==(4n-1).
31-42
答案:(4n-1)
3
7.数列{an}的前n项和Sn=n2-4n+2,则|a1|+|a2|+…+|a10|=________. 解析:当n=1时,a1=S1=-1. 当n≥2时,an=Sn-Sn-1=2n-5.
??-1,n=1,∴an=?
??2n-5,n≥2.
5
令2n-5≤0,得n≤,∴当n≤2时,an<0,当n≥3时,
2
an>0,∴|a1|+|a2|+…+|a10|=-(a1+a2)+(a3+a4+…+a10)=S10-2S2=66. 答案:66
22
8.数列{an}的前n项和Sn=2n-1,则a21+a2+…+an=________.
解析:当n=1时,a1=S1=1,
当n≥2时,an=Sn-Sn-1=2n-1-(2n-1-1)=2n-1,
2=4n-1. 又∵a1=1适合上式.∴an=2n-1,∴an
2∴数列{a2n}是以a1=1为首项,以4为公比的等比数列.
1·?1-4n?1
22
∴a2=(4n-1). 1+a2+…+an=31-41
答案:(4n-1)
3
9. (2017·全国Ⅰ卷)记Sn为等比数列{an}的前n项和.已知S2=2,S3=-6. (1)求{an}的通项公式;
(2)求Sn,并判断Sn+1,Sn,Sn+2是否成等差数列. 解:(1)设{an}的公比为q,由题设可得
???a1?1+q?=2?q=-2,
,解得? ?
2
???a1?1+q+q?=-6?a1=-2,
故{an}的通项公式为an=(-2)n.
a1?1-qn?2n+12n(2)由(1)可得Sn==-+(-1)·. 331-q2n+3-2n+24n
由于Sn+2+Sn+1=-+(-1)·
332n+1??2
n=2?-+?-1??=2Sn, 3??3故Sn+1,Sn,Sn+2成等差数列.
10.(2018·天津卷)设{an}是等差数列,其前n项和为Sn(n∈N*);{bn}是等比数列,公比大于0,其前n项和为Tn(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.
(1)求Sn和Tn;
(2)若Sn+(T1+T2+…+Tn)=an+4bn,求正整数n的值. 解:(1)设等比数列{bn}的公比为q,由b1=1,
1-2n
b3=b2+2,可得q2-q-2=0,因为q>0,可得q=2,故bn=2n-1.所以,Tn==2n-1.
1-2设等差数列{an}的公差为d,由b4=a3+a5,可得a1+3d=4,由b5=a4+2a6,可得3a1+13dn?n+1?
=16,从而a1=1,d=1,故an=n.所以Sn=. 2
(2)由(1),有
T1+T2+…+Tn=(21+22+…+2n)-n=
2×?1-2n?
-n=2n+1-n-2.
1-2
n?n+1?
由Sn+(T1+T2+…+Tn)=an+4bn可得+2n+1-n-2=n+2n+1,整理得n2-3n-4=0,
2解得n=-1(舍),或n=4.所以n的值为4.
2020届新高考艺术生数学复习冲关训练:第五章 第4节数列求和
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)