好文档 - 专业文书写作范文服务资料分享网站

最新广东省高考数学真题(理科)及答案

天下 分享 时间: 加入收藏 我要投稿 点赞

绝密★启用前 试卷类型:A

20xx年普通高等学校招生全国统一考试(广东卷)

数学(理科)

本试卷共4页,21小题,满分150分.考试用时120分钟

注意事项:1. 答卷前,考生务必用黑色笔迹的钢笔或签字笔将自己的姓名和考生号、考

场号、座位号填写在答题卡上。用2B铅笔讲试卷类型(A)填涂在答题卡相应的位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。 2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。 4.作答选做题时,请先用2B铅笔填涂选做题的题组号对应的信息点,再作答。漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁,考试结束后,将试题与答题卡一并交回。

1参考公式:台体的体积公式V=(S1+S2+s1s2)h,其中S1,S2分别表示台体的上、下底面

3积,h表示台体的高。

一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.设集合M={x∣x2+2x=0,x∈R},N={x∣x2-2x=0,x∈R},则M∪N= A. {0} B. {0,2} C. {-2,0} D {-2,0,2}

3x2

2.定义域为R的四个函数y=x,y=2,y=x+1,y=2sinx中,奇函数的个数是 A. 4 B.3 C. 2 D.1

3.若复数z满足iz=2+4i,则在复平面内,z对应的点的坐标是 A. (2,4) B.(2,-4) C. (4,-2) D(4,2) 4.已知离散型随机变量X的分布列为

X P

则X的数学期望E(X)= A.

5.某四棱台的三视图如图1所示,则该四棱台的体积是

1 2 3 B. 2 C. D 3

A.4 B.

C.

D.6

α,n

β,则m∥n

6.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是

⊥β,m

C.若m⊥ n,m α

A.若α A.

α,n

β,则m⊥ n B.若α∥β,m

,n β,则α⊥β D.若m α,m∥n,n∥β,则α

7.已知中心在原点的双曲线C的右焦点为F(3,0),离心率等于,则C的方程是

⊥β

= 1 B.

= 1 C.

= 1 D. = 1

8.设整数n≥4,集合X={1,2,3……,n}。令集合S={(x,y,z)|x,y,z∈X,且三条件x

A.(y,z,w)∈s,(x,y,w)

S B.(y,z,w)∈s,(x,y,w)∈S

C. (y,z,w)s,(x,y,w)∈S D. (y,z,w)s,(x,y,w)S 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。 (一)必做题(9~13题)

9.不等式x2+x-2<0的解集为 。

10.若曲线y=kx+lnx在点(1,k)处的切线平行于x轴,则k= 。 11.执行如图2所示的程序框图,若输入n的值为4,则输出s的值为 。

12,在等差数列{an}中,已知a3+a8=10,则3a5+a7=___

13.给定区域:.令点集T=|(x0,y0)∈D|x0,y0∈Z,(x0,y0)是z=x+y在D上取得最大值或最小值的点,则T中的点共确定____条不同的直线。 (二)选做题(14-15题,考生只能从中选做一题)

14(坐标系与参数方程选做题)已知曲线C的参数方程为(t为参数),C在点(1,1)处的切线为L,一座标原点为极点,x轴的正半轴为极轴建立极坐标,则L的极坐标方程为_______.

15.(几何证明选讲选做题)如图3,AB是圆O的直径,点C在圆O上,延长BC到D是BC=CD,过C作圆O的切线交AD于E。若AB=6,ED=2,则BC=______.

三、解答题:本大题共6小题,满分80分,解答需写出文字说明。证明过程和演算步骤。 16.(本小题满分12分) 已知函数f(x)=

cos(x-

?),X∈R。 12(1) 求f( -

?)的值; 63,θ∈(5(2) 若cosθ= ,2π),求f(2θ+

?)。 317.(本小题满分12分)

某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图4所示,其中茎为十位数,叶为个位数。

(1) 根据茎叶图计算样本均值;

(2) 日加工零件个数大于样本均值的工人为优秀工人。根据茎叶图推断该车间12名工

人中有几名优秀工人?

(3) 从该车间12名工人中,任取2人,求恰有1名优秀工人的概率

18(本小题满分4分)

如图5,在等腰直角三角形ABC中,∠A =900 BC=6,D,E分别是AC,AB上的点,CD=BE=,O为BC的中点.将△ADE沿DE折起,得到如图6所示的四棱椎A’-BCDE,其中A’O=?3

(1) 证明:A’O⊥平面BCDE;

(2) 求二面角A’-CD-B的平面角的余弦值 19.(本小题满分14分)

设数列{an}的前n项和为Sn,已知a1=1,

=an+1-

n2 – n - ,n∈N·.

(1)求a2的值

(2)求数列{an}的通项公式

(3) 证明:对一切正整数n,有

17111。。+< +++。

an4a1a2a3

20.(本小题满分14分)

已知抛物线c的顶点为原点,其焦点F(0,c)(c>0)到直线L:x-y-2=0的距离为上的点,过点P做抛物线C的两条切线PA,PB,其中A,B为切点。

(1) 求抛物线C的方程;

(2) 当点P()x0,y0)为直线L上的定点时,求直线AB的方程; (3) 当点P在直线L上移动时,求|AF|·|BF|的最小值

21.(本小题满分14分)

设函数f(x)=(x-1)ex-kx2(k∈R). (1) 当k=1时,求函数f(x)的单调区间;

(2) 当k∈(1/2,1]时,求函数f(x)在[0,k]上的最大值M.

. 设P为直线L

以下答案是个人做的,仅供大家参考:

1.D,2.C,3.C,4.A,5.B,6.D ,7.B,8.B,

9.-2

17 25?416.(1)1, (2)

17.(1)22, (2)4.(3)

16 33322,A

18.(1)在图5中,连接AO,OD,作OF⊥AC,得OF=

D=22,OD=5,

勾股定理求得 A'O ⊥ OD,等腰直角知A'O ⊥ BC,所以。。。

(2)在图6中,延长CD,作OF'⊥CD,连A'F',最后求得19.(1)a2=4 (2)an=n2

317 17(3)原式< 1++

14111717++。。。+=-<

n*(n?1)4n?13*(3?1)4*(4?1)49220.(1)方程:x2=2y, (2)直线方程:x0x=y+y0 (3)

21.单调区间:(-∞,0),[0,ln2],(ln2,+∞),最大值为-1。

最新广东省高考数学真题(理科)及答案

绝密★启用前试卷类型:A20xx年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分.考试用时120分钟注意事项:1.答卷前,考生务必用黑色笔迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上。用2B铅笔讲试卷类型(A)填涂在答题卡相应的位置
推荐度:
点击下载文档文档为doc格式
5v3vv6vh408njyy26yqz6tzp834d3b018u7
领取福利

微信扫码领取福利

微信扫码分享