好文档 - 专业文书写作范文服务资料分享网站

某水利枢纽工程大坝安全监测资料分析报告 

天下 分享 时间: 加入收藏 我要投稿 点赞

布置4个深层承压水监测孔,共布置59个扬压力监测孔。

1.2.6绕坝渗流监测

在左右岸各布置8个监测孔,监测绕坝渗流情况。 1.2.7渗漏量监测

(1)坝体渗漏量监测。在灌浆廊道上游排水沟内于9#、15#坝段集水井的左右两侧各布置1台YL型电容式量水堰渗流量仪,共4台。

(2)坝基渗漏量监测。在灌浆廊道下游排水沟内于9#、15#坝段集水井的左右两侧各布置了1台YL型电容式量水堰渗流量仪,以监测主排水孔的渗漏量,共4台。

1.2.8应力、应变及温度监测

(1)温度监测。在5#、14#、21#三个典型坝段内,依高程不同,每隔10~15m布设一排温度计,每排3~5个测点进行坝体温度观测;在坝踵、坝趾及坝基中部,沿铅直方向在基岩内距建基面0.0、1.5、3.0、5.0m各布置一支电阻温度计进行基岩温度监测。

(2)纵横缝开合度监测。在典型坝段的各条纵、横缝及左右岸坡坝段的横缝上布置测缝计,监测缝面开合度变化情况。

(3)坝体渗透压力、泥沙压力监测。在5#、14#坝段观测断面高程904.50m和906.00m布置两排10支渗压计,与坝面的距离为0.25、1.05、2.55、4.55、7.65m;在5#、14#坝段高程948.00m以下,每隔10m左右布置一对土压力计和一支渗压计。

(4)坝体应力、应变监测。在典型坝段的基础截面布置五向应变计组、无应力计,以监测该截面的应力应变;在坝踵部位埋设应变计、测缝计进行应力应变和缝面变化监测;在岸坡坝段布置单向应变计及基岩变位计监测坝肩的受力和变形情况。

(5)钢筋应力监测。在5#坝段底孔孔口、闸墩及9#坝段排水泵房等部位布置钢筋计进行钢筋应力监测。

(6)压力钢管监测。在14#电站坝段压力钢管的上弯段、斜直段及下弯段截取三个垂直于钢管轴线的剖面,在每个剖面的上下、左右侧布置钢板计、钢筋计、测缝计、渗压计、应力计及无应力计对压力钢管的工作状态进行监测。

1.2.9水位、水温、气温监测

(1)水位监测:大坝在水库下闸蓄水前采用上下游水尺进行水位监测,电站机组投入运行后利用19#坝段及电站尾水平台的水位计进行监测。

(2)水温监测:选择上游坝面作为监测断面,利用5#、14#、22#坝段布置的电阻温度计进行水温监测。

3

(3)气温监测:利用坝址附近即左岸山体上游侧和右岸坝段布置的两个气温观测点,安装百叶箱,采用电阻温度计进行气温监测。

1.2.10坝基抗剪平硐应力应变监测

(1)应力应变监测:在3条坝基抗剪平硐内共埋设20套五向应变计组和无应力计,以监测平硐混凝土内应力状况。

(2)温度监测:在平硐内共埋设温度计63支,进行回填混凝土温度监测。 (3)周边回填缝开度监测:在3条平硐及部分支硐内选择10个观测断面,每个断面分别在两侧及顶部各布置1支测缝计,共计30支,以监测周边回填缝的开合度。

(4)剪切带变形监测:在平硐内SCJ08、SCJ10剪切带上各埋设6套3DM-200型三向测缝计,共计12套。

万家寨水利枢纽工程大坝安全监测测点及仪器布置见图1-1~图1-10。

2 变形观测资料分析

2.1荷载因素分析

2.1.1水位荷载

本工程1998年10月1日下闸蓄水,1998年11月25日到达施工初期运行水位960.00m。至2001年5月底,水库库水位在929.50m至974.54m之间变动,其中2000年3月24日水位降至最低,为929.50m;2001年4月17日水位升至最高,为974.54m。在此期间,库水位主要经历了4次大幅度的变化,分别是1998年10月的蓄水过程,1999年3月和2000年3月库水位的降升过程,2001年3、4月的库水位升高过程。库水位变化过程线见图2-1。

水荷载是坝体及坝基变形的主要影响因素之一。理论分析表明,坝体变形可以用水位的1~4次方表示,本次回归计算分析采用h、h2、h3、h4作为水位分量的因子(其中,h=H/100,H为测时当天的平均库水位)。从回归计算所得的统计模型看,现有变形监测项目的部分测点的实测值统计模型中没有引入水位因子,其原因与大坝前期尚处于边建设边运行之中,观测资料相对较短,而其它因素(如温度、时效等)对大坝变形的影响较水荷载相对明显有关。为弥补现有资料相对较短,并利用有限元计算结果求出水位与外部变形的关系方程,将此方程作为一个因子,结合实测资料,建立了外部变形混合模型。有限元计算及分析详见2.3节。

2.1.2温度荷载

气温是影响坝体运行状态的重要外部条件,对坝上、下游水温、坝体混凝土温度、

4

坝基温度有直接影响,从而影响到坝的变形、应力、渗透等。

万家寨水利枢纽坝址地处北纬39.6°,该地区属温带季风大陆性气候,冬季寒冷且时间漫长,气候干燥,多风沙;夏季炎热;春、秋季短。气温年、季及昼夜变化大,骤降频繁。统计资料表明,本工程所在地区,一年四季均有寒潮发生,且寒潮降温幅度大,覆盖时间长。

实测枢纽工程区气温变化过程线见图2-2。因气温资料仅到2001年3月21日,为使环境量相对完整,便于回归分析,对此后4、5两个月的气温,用2000年同期的资料进行补充。根据1995年12月9日至2001年3月31日每天平均气温的统计,在此时段内坝址处最高气温出现在1998年6月29日,最高气温为32.8℃;最低气温出现在1998年1月18日,最低气温为-21.9℃。

在进行坝体变形回归分析时,根据本工程的实际情况,采用了两类温度分量因子:一类为前期平均气温因子,包括T7、T15、T30、T60、T90、T120等(下标表示所取测时前的天数);一类为周期因子,包括sin(s)、sin2(s)、cos(s)、cos2(s)和sin(s)·cos(s),其中,s=2πt′/365,t′为测时距分析起始日期的时间长度(天)。变形测点实侧值回归议程中送入的年周期、半年周期和测时前期气温平均因子不全相同,反映了因测点位置不同,受温度边界条件影响(气温、水温)程度的不同。 2.2变形观测资料的整理与分析

本次资料分析中,位移方向按常规设定为:水平位移向下游及向左岸位移为正,上下游方向为纵轴Y,左右岸方向为横轴X;垂直位移向下为正。

2.2.1数据可靠性检查及精度估计方法

在进行观测资料的整理分析前,对观测数据进行了可靠性检查,并对其中不可避免地存在的以下三类误差分别进行了处理。

(1)疏失误差(人工误差):是指由于观测人员的疏忽而产生的误差,如仪器操作错误、记录错误、计算错误、计算机输入错误等。本次分析工作开始时,大坝观测自动化系统尚未投入正常运行,分析采用的所有资料均为人工观测、人工计算后输入到计算机,所以资料中疏失误差难以避免。因此,在资料分析前,对原始记录进行了大量的复核,对明显的疏失误差进行了插值补缺或非真值剔除。

(2)系统误差:是指由于观测设备、仪器、操作方法不完善或外界条件变化所引起的一种有规律的误差,如电缆接长或剪短、电缆接头硫化处理不当、不同测时更换测量仪器等,其可能的形式较为复杂,比疏失误差难于发现和处理。对这种误差,首选将

5

观测数据中的系统性变化(如系统性跳动或趋势性变化)分辩出来,然后根据测量系统的工作特性及结构变化对其产生的原因进行判断。对判定为测量因素引起的系统性变化(系统误差),采用曲线平移的方法进行必要的处理。

(3)偶然误差:是指由于若干偶然原因所引起的微量变化的综合作用所造成的误差。对具体观测项目而言,可以对测点的理论观测精度进行估计,但重要的是实测值的测量精度,它直接关系到测值的实用价值。对观测数据进行回归分析时,不存在严重欠拟合现象的条件下,其剩余量主要是由观测的偶然误差引起的,对不同的观测项目,用剩余标准差S对测量精度的上限进行了估计。

2.2.2水平位移监测资料的整理分析 (1)坝顶视准线

视准线布置在坝顶桩号0+017.185m处,共21个测点。视准线以1#、22#坝段两端作为变形观测基点,通过1#、22#坝段正、倒垂线组测得的坝顶水平位移进行绝对位移转换,由于1#坝段正、倒垂线组因各种原因未取得连续完整的测值,所以本次分析也无法换算得出坝顶绝对水平位移的系列测值。为了解坝顶的绝对水平变位,工作中通过对已完成的大坝外部变形控制网测量的成果的初步分析,再根据相同或相近测时视准线及引张线测量结果,换算出各测点4个测时的绝对位移,作出绝对位移沿坝段的分布图。由于只可以换算出4次绝对位移,测次较少,无法对坝顶绝对位移进行过程分析,所以本次重点分析坝段的相对水平位移。

视准线始测日期为1998年10月16日,视准线测值过程线见图2-3,不同日期测值相对于1#、22#坝段的位移分布曲线见图2-9~图2-11,视准线测值与库水位年相关图见图2-23、图2-24。通过外部变形控制网5次测量结果,换算出的坝顶各测点绝对位移分布图见图2-12,各测点相对位移特征值统计见表2-1。

当不考虑温度和时效时,坝体水平位移计算结果和水位相关线为单值曲线,作7#、14#坝段坝顶视准线测值与水位年相关图(见图2-23、图2-24),可以看到,相关线并不为单值曲线,可见影响坝顶水平位移的不仅仅是水位荷载。

为进一步分析气温和时效是否对坝顶水平位移产生影响,分别作出各坝段同水位同气温位移分布图(图2-9)、同水位不同气温位移分布图(图2-10)、不同水位同气温位移分布图(图2-11)【此处所说的同气温,并不是指测时气温,因为气温对坝体位移的影响有一定的滞后,真正影响坝体位移的是测时前一段时间的平均气温,这一点在统计模型分析中能反映出来,故在气温无反常的情况下,取月份相近的测时,认为两测时

6

前期平均气温基本相同】。

视准线同水位、同气温位移分布图(图2-9)中,两次测时相差一年,但各坝段坝顶位移基本相等,说明时效对坝顶水平位移影响很小或基本没有影响。

视准线同水位、不同气温位移分布图(图2-10)中,两测次测时月份不同,分别为5月和10月,从测时前期平均气温(测时前1~2月)来看,10月份前期平均气温较5月高,1999年5月19日各坝段坝顶水平位移测值比2000年10月6日的大很多(右边4个坝段除外),说明气温与坝顶水平位移呈负相关,气温越高,坝顶向下游的水平位移越小。右边4个坝段两次测值变化不大,可能是因为这4个坝段受右岸山体和下游主、副厂房的影响,受日光直接照射的时间较少,坝体内温度随气温变化幅度较其它坝段相对要小。

视准线不同水位、同气温位移分布图(图2-11)中,两测次测时均在2月份,气温对坝顶水平位移的影响应基本相同,但水位961.31m时,各坝段坝顶的水平位移较水位955.25m时要大,说明随着库水位的升高,坝顶水平位移增大。

从视准线位移分布图(图2-9、图2-10、图2-11)还可以看到,坝顶水平位移分布呈河床坝段大,边坡坝段小的趋势,这符合坝体变形分布规律。同时,由外部变形控制网测量成果初步分析的1#、22#坝段测点位移,通过视准线换算出的7#、14#坝段坝顶水平位移值基本相同。【图2-12为由外部变形控制网测量成果初步分析的1#、22#坝段测点水平位移值,结合视准线测量结果换算出的坝顶各测点水平位移绝对值的分布】

综上所述,坝顶各测点水平位移测值并不是单一的与水位或气温变化相关,而是受两者综合作用的结果。当库水位升高时,坝顶水平位移向下游增大,反之减小;当气温升高时,坝顶水平位移向上游增大,这一变化符合坝体变化规律。视准线过程线图中,几乎所有测点水平位移测值在2000年4月下旬有一明显增大的过程,这主要是因为在该时段水位明显升高,到970.00m高程左右,水位升高使坝顶水平位移向下游明显增大;而2000年7月下旬坝顶水平位移有一明显减小的过程,这主要是因为在该时段水位下降,而气温明显升高,两者的综合作用,造成坝顶水平位移偏向上游。2001年4月份水位升到最高,最高达974.54m,而此时气温也较低,绝大部分测点水平位移最大值也出现在此时段,说明水位和气温变化对坝顶水平位移影响明显。

从各坝段相对于1#、22#坝段变位测值的统计(见表2-1)可以看出:向下游最大位移出现在2001年4月11日的13#坝段,最大位移值为13.90mm;最小位移出现在1999年2月20日的3#坝段,最小位移为-3.14mm;最大变幅发生在11#坝段,为15.70mm;各

7

某水利枢纽工程大坝安全监测资料分析报告 

布置4个深层承压水监测孔,共布置59个扬压力监测孔。1.2.6绕坝渗流监测在左右岸各布置8个监测孔,监测绕坝渗流情况。1.2.7渗漏量监测(1)坝体渗漏量监测。在灌浆廊道上游排水沟内于9#、15#坝段集水井的左右两侧各布置1台YL型电容式量水堰渗流量仪,共4台。(2)坝基渗漏量监测。在灌浆廊道下游排水沟内于9#、15#坝段集水
推荐度:
点击下载文档文档为doc格式
5u3fb9qkny6j6mw9r6uk
领取福利

微信扫码领取福利

微信扫码分享