探究规律 有什么规律?、 -3,5,0,+58,0.6 要求小组讨论,合作学习. 教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页). 巩固练习:教科书第15页练习. 其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别. 引导学生看教科书第16页的图,并回答相关问题: 把14个气温从低到高排列; 把这14个数用数轴上的点表示出来; 观察并思考:观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗? 应怎样比较两个数的大小呢? 学生交流后,教师总结: 14个数从左到右的顺序就是温度从低到高的顺序: 在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数. 在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则 想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系. 要求学生在头脑中有清晰的图形. 例2,比较下列各数的大小(教科书第17页例) 比较大小的过程要紧扣法则进行,注意书写格式 练习:第18页练习 小结与作业 的法则,可看做是绝对值概念的一个应用,所以安排此例. 学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个讨论. 让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。 数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习 ,加强数与形的想象。 结合实际发现新知 课堂练习 课堂小结 本课作业 怎样求一个数的绝对值,怎样比较有理数的大小? 1, 必做题:教产书第19页习题1,2,第4,5,6,10 2, 选做题:教师自行安排 本课教育评注(课堂设计理念,实际教学效果及改进设想) 1, 情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受. 2, 一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。 3, 有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型.为此设置了想象练习. 4, 本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。 附板书: 1.2.4 绝对值
课题: 1.3.1 有理数的加法(一)
1,在现实背景中理解有理数加法的意义. 2,经历探索有理数加法法则的过程,理解有理数的加法法则. 教学目标 3,能积极地参与探究有理数加法法则的活动,并学会与他人交流合作. 4,能较为熟练地进行有理数的加法运算,并能解决简单的实际间题. 5,在教学中适当渗透分类讨论思想 教学难点 异号两数相加 知识重点 和的符号的确定 教学过程(师生活动) 设计理念 回顾用正负数表示数量的实际例子; 在足球比赛中,如果把进球数记为正数,失球数让学生感受到在实际问记为负数,它们的和叫做净胜球数.若红队进4个球,题中做加法运算的数可设置情境 失2个球,则红队的胜球数,可以怎样表示?蓝队的能超出正数的范围,体引入课题 胜球数呢? 会学习有理数加法的必 师:如何进行类似的有理数的加法运算呢?这就要性,激发学生探究新是我们这节课一起与大家探讨的问题. 知的兴趣. (出示课题) 如果是球队在某场比赛中上半场失了两个球,下 再次创设足球比赛情半场失了3个球,那么它的得胜球是几个呢?算式应境,一方面与引题相呼该 应,联系密切,另一方怎么列?若这支球队上半场进了2个球,下半场失了面让学生在此情境中感3个球,又如何列出算式,求它的得胜球呢? 受到有理数相加的几种(学生思考回答) 不同情形,并能将它分思考:请同学们想想,这支球队在这场比赛中还类,渗透分类讨论思想. 分析问题 可 估计学生能顺利地探究新知 能出现其他的什么情况?你能列出算式吗?与同伴得到(+)+(+),(+)交流。 +(一),(一)+(+),学生相互交流后,教师进一步引导学生可以把两(一)十(-),0+(+),个有理数相加归纳为同号两数相加、异号两数相加、0+(一). 一个数同零相加这三种情况. 但不能把它归的为 同号异号等三类,所以 2,借助数轴来讨论有理数的加法.I 此处需教师.点拔、指 一个物体向左右方向运动,我们规定向左运动为扎,体现教师的引导者解决问题 课堂练习 课堂小结 负,向右为正,向右运动5m,记作5m,向左运动5m,记作-5 m . (1)(小组合作)把我们已经得出的几种有理数相加的情况在数轴上用运动的方向表示出来,并求出结果,解释它的意义. (2)交流汇报.(对学习小组的汇报结果,数轴用实物投影仪展示,算式由教师写在黑板上) (3)说一说有理数相加应注意什么?(符号,绝对值)能用自己的语言归纳如何相加吗? (4)在学生归纳的基础上,教师出示有理数加法法则. 有理数加法法则: 1,同号两数相加,取相同的符号,并把绝对值相加. 2,绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0. 3,一个数同。相加,仍得这个数. 解决问题 例1计算: (1)(-3)+(-9); (2)(-5)+13; (3)0十(-7); (4)(-4.7)+3.9. 教师板演,让学生说出每一步运算所依据的法则. 请同学们比较,有理数的加法运算与小学时候学的加法有什么异同?(如:有理数加法计算中要注意符号,和不一定大于加数等等) 例2足球循环赛中,红队4:1胜黄队,黄队1:0胜蓝队蓝队1:0胜红队,计算各队的净胜球数. (让学生读数,理解题意,思考解决方案,然后由学生口述,教师板书) 学生活动:请学生说一说在生活中用到有理数加法的例子。 教科书第23页练习 小结与作业 作用. ①假设原点0为第一次运动起点,第二次运动的起点是第一次运动的终点.②若学生在学习小组内不能很好地参与探究,也可以让其参照教科书第21页的“探究”自主进行.③让学生感受“数学模型”的思想.④学会与同伴交流,并在交流中获益.培养学生的语言表达能力和归纳能力,也许学生说得不够严谨,但这并不重要,重要的足能用自己的语言表达自己所发现的规律 注意点:(1)下先确定是哪种类型的加法再定符号,最后算绝对位.(2)教教师板演的例通要完整体现过程,并要求学生在刚开始学的时候要把中间的过 程写完整.(3)体现化归思想.(4)这里增加了两道题目,要是让学生能较为熟练地运用法则进行计算. 拓宽学生视野,让学 生体会到数学与生活的密切联系。 通过这节课的学习,你有哪些收获,学生自己总结。 必做题:阅读教科书第20~22页,教科书第31习题本课作业 1.3第1、12、第13题。 本课教育评注(课堂设计理念,实际教学效果及改进设想) 1,在本节课的设计中,注重引导学生参与探究、归纳(用自己的语言叙迷)有理数加法法则的过程. 2,注意渗透数学思想方法.数学思想方法的渗透不可能立即见效,也不可能靠一朝一夕让学生理解、掌握,所以,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等).如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号,一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法. 3,注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听 别人的意见和建议. 附板书:1.3.1 有理数的加法(一) 课题: 1.3.1 有理数的加法(二)
1,经历有理数加法运算律的探索过程,理解有理数加法的运算律. 教学目标 2,能用运算律简化有理数加法的运算. 3,使学生逐渐养成,“算必讲理”的习惯,培养学生初步的推理能力与表达能力. 教学难点 知识重点 合理运用运算律 加法交换律和结合律,及其合理、灵活的运用 教学过程(师生活动) 回顾复习:小学时已学过的加法运算律有哪几条? 设置情境 引入课题 学生回答后教师接着问:你能用自己的语言或举例 子来说明一下加法的交换律与结合律吗? 提出问题:这些运算律在有理数加法中适用吗?这 就是这节课我们要研究的课题. 设计理念 探讨加法运算律在有理数范围内是否适用. 1,有理数加法交换律的学习. 问题1:我们如何知道加法交换律在有理数范围内是否适用?(先由教师举一些实际例子来说明,然后鼓励学生举不同的数来验证) 问题2:我们如何用语言来叙述有理数加法的交换律呢?(这个问题请学生回答,并互相补充) 教师归纳后板书:“有理数加法中,两个数相加,交换加数的位置,和不变.” 分析问题 探究新知 问题3 :你能把有理数加法的交换律用字母来表 示吗? 由学生回答得出a+b=b+a后,教师说明: 〔1〕式子中的字母分别表示任意的一个有理数.(如:既可成表示整数,也可以表示分数;既可以表示正数,也可以表示负数或0)。 (2)在同一个式子中,同一个字母表示同一个数. 2,有理数加法结合律的学习. (基本步骤同于加法交换律的学习) “加法运算律对所有有理数都成立”目前只能直接给出,让学生举例尝试只起到验证的作用.要让学生举不同的数验证,是为避免学生只由一个例子即得出某种结论.鼓动学生用自己的语言表达所发现的贻论或规律. 让学生感受字母表示数的含义,同时也让学生体会到数学符号语言的简洁性. 讨论交流 解决问题 思考:如果四个或四个以上的有理数相加时,还能使用加法交换律与结合律吗?与同伴交流你的看法,并举例子来说明你的观点. 例1计算: (1)16+(-25)十24+(-35); (2)(-2.48)+(+4.33)+(-7.52)+(-4.33). 师生共同分析完成,如第(1)题,教师板书: 解:(1)原式=16+24+ (-25)十(-35)(此时教师问:依据是什么?) =(16+24)+[(-25)+(-35)〕(依据是什么?) =40+(一60) =20 解题后反思: 先让学生按从左到右的顺序依次相加,算一算,再让学生说一说,通过这两道题目的计算,你有什么体会?(使用运算律能使运算简便,简化运算的方法有:把正数和负数分别相加,有相反毅的先把相反数相加,能凑整的先凑整等等). 例2教科书第24页例4. 这题可这样处理:I 1,让学生估计一下总重量是超过标准重量还是不足标准重量. 2,让学生思考如何计算,学生能给教科书提供的解法1 .即先10袋小麦的总质量,再计算总计超过多千克。 此时可组织学生讨论:有没有不同的解法?(此时,如果已有学生提出教材的解法2的思路,则请学生讨论这种解法的合理性。 并比较这两种解法。 (这是一个有理数应用的例子,这两种解法都应让学生掌握,尤其是解法2更是体现学习有理数加法运算的必要性。 注重学习小组内的合作与交流,让每个学生都能从与同伴的交流中获益。鼓励学生在已有知识的基础上对结论做进一步探索,同时也为接下去的应用打下基础。 强调算理,让学生在具体运算中体会运算律对简化运算的作用。 通过例1的学习让学生明白:加法的交换律与结合律通常是结合起来使用的。此处与书本相对增加了一道题,主要是考虑到存在互为相反数的两数相加的简便性。也是培养学业生能力的需要。