其中k1?sF(s)s?0?10(s?2)(s?5)100?(s?1)(s?3)s?0310(s?2)(s?5)??20s(s?3)s??1解:k2?(s?1)F(s)s??1?k3?(s?3)F(s)s??3?10(s?2)(s?5)10??s(s?1)3s??31002010??3ss?13(s?3)解:?F(s)?10?100??f(t)???20e?t?e?3t??(t)3?3?s3?5s2?9s?7已知F(s)?,(s?1)(s?2)求其逆变换解:分式分解法 F(s)?s?2?k1k?2s?1s?2其中k1?(s?1)? k2?s?3?2(s?1)(s?2)s??1s?3??1s?1s??221?s?1s?2?F(s)?s?2??f(t)??'(t)?2?(t)?(2e?t?e?2t)?(t)六、有一幅度为1,脉冲宽度为2ms的周期矩形脉冲,其周期为8ms,如图所示,求频谱并画出频谱图频谱图。(10分)
1f(t)0…Tt-T??2?2解:付里叶变换为
1e?jn?t?T?jn??2??2?2Tsin(n??)2n?
Fn为实数,可直接画成一个频谱图。
14Fn?2?02?4?ω???六、有一幅度为1,脉冲宽度为2ms的方波,其周期为4ms,如图所示,求频谱并画出频谱图。(10分)
解:?=2?*1000/4=500?
付里叶变换为
??4sin(2n?1)500?tn?1(2n?1)??
Fn为实数,可直接画成一个频谱图。
或幅频图如上,相频图如下:
如图反馈因果系统,问当K满足什么条件时,系统是稳定的?其中子系统的系统函数G(s)=1/[(s+1)(s+2)] ∑G(s)F(s)Y(s)
K
解:设加法器的输出信号X(s) X(s)=KY(s)+F(s)
Y(s)= G(s)X(s)=K G(s)Y(s)+ G(s)F(s)
H(s)=Y(s)/F(s)=G(s)/[1-KG(s)]=1/(s2+3s+2-k) H(s)的极点为
2
3?3?p1,2??????2?k
2?2?
为使极点在左半平面,必须(3/2)2-2+k<(3/2)2, k<2,即当k<2,系统稳定。
如图反馈因果系统,问当K满足什么条件时,系统是稳定的?
解:如图所示,
在加法器处可写出系统方程为:
y”(t) + 4y’(t) + (3-K)y(t) = f(t)
H(S)=1/(S2+4S+3-K) 其极点
2p??2?4?4(3?k)1,2
p1,2??2?4?4k
为使极点在左半平面,必须4+4k<22, 即k<0,
当k<0时,系统稳定。
如图反馈因果系统,问当K满足什么条件时,系统是稳定的?
解:如图所示,
在前加法器处可写出方程为:
X”(t) + 4X’(t) + 3X(t) -Ky(t) = f(t) 在后加法器处可写出方程为: 4X’(t) + X(t) =y(t) 系统方程为:
y”(t) + 4y’(t) + (3-K)y(t) =4f’(t)+ f(t)
H(S)=(4S+1)/(S2+4S+3-K) 其极点
p1,2??2?42?4(3?k)
p1,2??2?4?4k
为使极点在左半平面,必须4+4k<22, 即k<0,
当k<0时,系统稳定。
如图离散因果系统框图 ,为使系统稳定,求常量a的取值范围 2 ∑∑z?1F(z) Y(z)a
解:设加法器输出信号X(z) X(z)=F(z)+a/Z*X(z)
Y(z)=(2+1/z)X(z)= (2+1/z)/(1-a/z)F(z) H(z)= (2+1/z)/(1-a/z)=(2z+1)/(z-a)
为使系统稳定,H(z)的极点必须在单位园内, 故|a|<1
12??1??????周期信号 f(t) = 1 ? cos ? ? sin ? t ? ? ? t ?2?43?4?36?