好文档 - 专业文书写作范文服务资料分享网站

【必考题】高三数学上期中模拟试题带答案(1)

天下 分享 时间: 加入收藏 我要投稿 点赞

【必考题】高三数学上期中模拟试题带答案(1)

一、选择题

1.朱载堉(1536~1611),是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中制成了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度13个音,相邻两个音之间的频率之比相等,且最后一个音是最初那个音的频率的2倍.设第三个音的频率为f1,第七个音的频率为f2,则A.4122 B.1116 C.82 f2= f1D.32

2.在等差数列{an}中,a1?a2?a3?3,a28?a29?a30?165,则此数列前30项和等于( ) A.810

B.840

C.870

D.900

n?13.已知等比数列?an?的前n项和为Sn,且满足2Sn?2??,则?的值是( )

A.4 B.2 C.?2 D.?4

n4.已知数列{an}满足a1?1,an?1?an?2,则a10?( )

A.1024 B.2048 C.1023 D.2047

5.河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处“浮雕像”共7层,每上层的数量是下层的2倍,总共有1016个“浮雕像”,这些“浮雕像”构成一幅优美的图案,若从最下层往上“浮雕像”的数量构成一个数列?an?,则log2?a3?a5?的值为( ) A.8

B.10

C.12

D.16

6.已知x?0,y?0,且9x?y?1,则A.10 7.设函数

B.12?

是定义在

,已知

11?的最小值是 xyC.14

D.16 有

满足

中第

上的单调函数,且对于任意正数

,若一个各项均为正数的数列,其中

是数列

的前项和,则数列

18项A.

( )

B.9

C.18

D.36

8.若关于x的不等式x2?ax?2?0在区间?1,5?上有解,则a的取值范围是( ) A.???23?,??? ?5?B.???23?,1? 5??C.?1,???

D.???,??23? 5??9.如图,有四座城市A、B、C、D,其中B在A的正东方向,且与A相距120km,

D在A的北偏东30°方向,且与A相距60km;C在B的北偏东30°方向,且与B相距

6013km,一架飞机从城市D出发以360km/h的速度向城市C飞行,飞行了15min,

接到命令改变航向,飞向城市B,此时飞机距离城市B有( )

A.120km B.606km C.605km D.603km

10.已知?ABC的三边长是三个连续的自然数,且最大的内角是最小内角的2倍,则最小角的余弦值为( ) A.

3 4B.

5 6C.

7 8D.

2 311.在等差数列?an?中,如果a1?a2?40,a3?a4?60,那么a7?a8?( ) A.95

B.100

C.135

D.80

12.在?ABC中,内角A,B,C所对的边分别为a,b,c,若bsin2A?3asinB?0,

b?3c,则

A.1

c的值为( ) aB.3 3C.5 5D.7 7二、填空题

13.已知等差数列?an?的前n项Sn有最大值,且________.

14.在△ABC中,a?2,c?4,且3sinA?2sinB,则cosC=____. 15.已知a?0,b?0,a8??1,则当Sna7?0时n的最小值为

12??2,a?2b的最小值为_______________. ab16.已知等比数列{an}的前n项和为Sn,若a3=17.已知数列?an?满足a1?1,an?1??93,S3=,则a1的值为________. 221,n?N*,则a2019?__________. 1?anx2?x?318.设x?0,则的最小值为______.

x?119.设a?R,若x>0时均有[(a-1)x-1]( x 2-ax-1)≥0,则a=__________.

20.在

中,若

,则

__________.

三、解答题

21.数列?an?中,a1?1,an?1?an?2n?1.

(1)求?an?的通项公式; (2)设bn?14an?1,求出数列?bn?的前n项和.

22.已知等比数列?an?的公比q?1,且满足:a2?a3?a4?28,且a3?2是a2,a4的等差中项.

(1)求数列?an?的通项公式; (2)若小值.

23.等差数列{an}的各项均为正数,a1?1,前n项和为Sn.等比数列{bn} 中,b1?1,且b2S2?6,b2?S3?8.

(1)求数列{an}与{bn}的通项公式; (2)求

bn?anlog1an,Sn?b1?b2?L?bn,求使S?n·2n?1?62成立的正整数n的最n2111????. S1S2Snv?11?v3a?,sinx?cosx24.已知向量??与b??1,y?共线,设函数y?f?x?. ?22?2??(1)求函数f?x?的最小正周期及最大值.

(2)已知锐角?ABC的三个内角分别为A,B,C,若有f?A???????3,边3?BC?7,sinB?21,求?ABC的面积. 7的根.

25.已知?an?是递增的等差数列,a2,a4是方程(1)求?an?的通项公式; (2)求数列??an?nn?的前项和.

?2?26.在等比数列?an?中,a1?0n?N(1)求数列?an?的通项公式:

?*?,且a3?a2?8,又a1,a5的等比中项为16.

(2)设bn?log4an,数列?bn?的前n项和为Sn,是否存在正整数k,使得

1111???L??k对任意n?N*恒成立.若存在,求出正整数k的最小值;若不存在,S1S2S3Sn请说明理由.

【参考答案】***试卷处理标记,请不要删除

一、选择题 1.D 解析:D 【解析】 【分析】

:先设第一个音的频率为a,设相邻两个音之间的频率之比为q,得出通项公式, 根据最后一个音是最初那个音的频率的2倍,得出公比,最后计算第三个音的频率与第七个音的频率的比值。 【详解】

n?1:设第一个音的频率为a,设相邻两个音之间的频率之比为q,那么an?aq,根据最

后一个音是最初那个音的频率的2倍,a?2a?aq?q?2,所以

1312112f2a7??q4?32,故选D f1a3【点睛】

:本题考查了等比数列的基本应用,从题目中后一项与前一项之比为一个常数,抽象出等比数列。

2.B

解析:B 【解析】

数列前30项和可看作每三项一组,共十组的和,显然这十组依次成等差数列,因此和为

10(3?165)?840 ,选B. 23.C

解析:C 【解析】 【分析】

利用Sn先求出an,然后计算出结果. 【详解】

根据题意,当n?1时,2S1?2a1?4??,?a1?n?1故当n?2时,an?Sn?Sn?1?2,

4??, 2Q数列?an?是等比数列,

则a1?1,故解得???2,

4???1, 2故选C. 【点睛】

本题主要考查了等比数列前n项和Sn的表达形式,只要求出数列中的项即可得到结果,较为基础.

4.C

解析:C 【解析】 【分析】 根据叠加法求结果. 【详解】

nn因为an?1?an?2,所以an?1?an?2,

1?210因此a10?a10?a9?a9?a8?L?a2?a1?a1?2?2?L?2?1??1023,选C.

1?2【点睛】

本题考查叠加法求通项以及等比数列求和,考查基本分析求解能力,属基础题.

985.C

解析:C 【解析】 【分析】

数列?an?,是等比数列,公比为2,前7项和为1016,由此可求得首项a1,得通项公式,从而得结论. 【详解】

Q最下层的“浮雕像”的数量为a1,依题有:公比q?2,n?7,S?7a11?271?2???1016,解

n?1n?21?n?7,n?N*,?a3?25,a5?27,从而得a1?8,则an?8?2?2??a3?a5?25?27?212,?log2?a3?a5??log2212?12,故选C.

【点睛】

本题考查等比数列的应用.数列应用题求解时,关键是根据题设抽象出数列的条件,然后利用数列的知识求解.

??6.D

解析:D 【解析】 【分析】

通过常数代换后,应用基本不等式求最值. 【详解】

∵x>0,y>0,且9x+y=1,

【必考题】高三数学上期中模拟试题带答案(1)

【必考题】高三数学上期中模拟试题带答案(1)一、选择题1.朱载堉(1536~1611),是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中制成了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度13个音,相邻两个音之间的
推荐度:
点击下载文档文档为doc格式
5ta3e7exwc3ibqw7s1xb7s7tu43ow500ttr
领取福利

微信扫码领取福利

微信扫码分享