好文档 - 专业文书写作范文服务资料分享网站

机器学习在能源与电力系统领域的应用和展望

天下 分享 时间: 加入收藏 我要投稿 点赞

()2019,431

[]115CRESWELLA,WHITET,DUMOULINV,etal.,():SinalProcessinaazine2018,35153-65.ggMg

[]WAN116GK,GOUC,DUANY,etal.Generativeadversarial

,():ofAutomaticaSinica2017,44588-598.]():络[自动化学报,J.2018,445793-803.

:]/networksintroductionandoutlook[J.IEEECAAJournal:aGenerativeadversarialnetworksnoverview[J].IEEE

·人工智能在电力系统及综合能源系统中的应用·

[]KANKANA(:130LAP,DASS,PAHWAA.AdaBoost+)an

outaesindistributionsstems[J].IEEETransactionsongy,():PowerSstems2014,291359-367.y

ensemblelearninroachforestimatineather-relatedgappgw

[]HEM,Z,V131iaoHANGJunshanITTALV.Robustonline

dnamicsecuritssessmentusindativeensembleyyagap,():Sstems2013,2844089-4098.y

decision-treelearninJ].IEEETransactionsonPowerg[[]N132GUYENHT,LONGBL.Onlineensemblelearninorgf

InternationalConferenceonSustainableEnerechnoloiesgyTg//IsecuritssessmentinPMUbasedpowersstem[C]EEEyay

[]王功明,乔俊飞,王磊.一种能量函数意义下的生成式对抗网117

,Q,WANWANGGonminIAOJunfeiGLei.Agenerativegg

adversarialnetworkbasedonenerunction[J].Actagyf,():AutomaticaSinica2018,445793-803.

118]fBuOseDdLGAANfN,HUAitiGon,alCimHaEg

LeLgA01-17].httposr:/c/oanrdxiv.org/abs/180e1n119]KDeUbPluYrNGAON,:BblUinDdZAmNotioVn,dMYadversarialnetworks[EB/OL].e[2b0lu120]oXrIg

A/aObsC/1,7L1I1.0B7,06Z4HU.examp

leswithadversarialJnYet,woertahttps://arxiv.org/abs/1801.02610ks121]cGOMEZAN,HUANGS,ZHAN.122]BhiItpth'NpeKsrOW:/c/raacSrkxiKinIvg.oMrug

si,/nSagbUsd

T/i1scH8rE0e1teGR.L04A8AN83ND.s123]aDreximvy.osrtig

f/yianbgs/1MM801DG.014A0N1s.[EB/OLtWAaransNGFY.orParallelcont:rolcandm124]TpfCrpHalincpEsatNpoitoaYrtntiasionzteio,nS[Jsy]sWAysNt.temsoncep

teGmIsEYi,Es2E010Tran,,K11(ar125]SdeverenewablescenarihoengenIeRraTydAsetrveNesmarrsaYsiariu,lnetworkaa2ln0np1ee8tn,wg

3o,3(srkL3sI)[bU:J32].IEEEasedW6e5hi-et,32erS75oU.itsalicationforintellienge[J].pAppp

liedSciences,2g018t,po8w(1er126

]孙秋野,胡旌伟,杨凌霄,等.基于G):模与参数辨识方法[SthUbNridQiumyoed,eliHUJninJng].自动化学报,dwepia,raYmAeNteGLr9ey1c4hn.

ology[J].gActa

aAutomaticaSii127]FbIr[ee2itN0nwNCf1oe7re-cn

,CH1e1-m2e5ng

teRnI].leShertaaTIANOP,ABBEtrtpnisivne:/g/,aarnaxidedvernsearrgiya-128]ZHOUZH.Ensembleleavrn.oirng

g/a[bUS,2009.

M129]fLILi,CHENXiq

un,ZHANGLeiIrneteelwliagyenttTraffricsanstpaotreetatsitoinSmaytisotnesm[sJ,30

AtioR.Semi-sup

ervised551n.[EB/OL].[2018-ILYCHM,etal.

[130n4g-03us]i.nhgttpc

so:n/d/iatiroxinval.BG/enOeLra]ti.n[g20a

1d8v-0er1s-a1r5ia]l.[13B,/eOtaLl]..[U2n0s1u8-p

0e1r-vi1s5e]d.[J20,1A8-R03B-E2L1]M.h,ttep

tas:/l/.

[13ageamentforinte,llig

aent:ioH6nr3schit0-63oe8nctur.Ienstelligenndt[13nENansauctsDiion,ngetasoglne.neMProadotwievl-eer

[13nus,daettaianlt.Geg

reatnieornatainveributionandutilizationd.[13技术的自能源混合建x8ia,4o4,(e5t)a:l9.01nW-e9-1e4ne.rgyati,fi2c0a1ti8on,44wi(t5h):G9A01N-[13n,eettwaolr.ksAc,oninnevcteirosn

sedmodels[EB/OL]e.[14.6N11ew.038Y5o2rk.:Springerultimodelens[14I1E4E,E15T(3ra)n:s1ae3ctmblefor2i3o-n1so336n.3(8I9CS.

ET),November14-16,2016,Hanoi,Vietnam:384-

sHysAtNemGtFraanns,ieHUntANGShyaoawei,CeHnEtNbaYsiendg

,oentadilm.Penoswioerreductionandcost-stsaebnisliittiveessnessesmmblelearning[C]//IEEEnC(EoIn2fe)r,enNcoevoenEmbenrer2g6y-2I8nt,e2rn0e1t7a,nBdEeijinnegrg,yCShiynsate:mI1-6nt.eg

ration孙永辉出功率短期预测,范磊,卫志农[J.电力系统及其,等.基于小波分析和集成学习的光伏输自动化学报,6-11.

]2016,28(4)

:fSoUreNcasYtionngghofuit,hePFAVoNLuetip,utWpoEIZwerhbinaosendog

,nwetaalve.lSethoarnt-atleyrsimandensemblelearning[J].Proceeding

softheCSU-EPSAs2016,28(4):6-11.

,PelAecPADOPOULOSS,KARAKATSANISI.Short-term

learntriincngityoimselto(haPodfdEsoCI[rCec)]a/s/tiIneEgbrEuuEPsinaryog2wt0ei-rames21n,dEeri20nesa1e5r,gyndCChoeannmfseepraemig

nbncleeaUtISAll:i1-6.

,F,eTnAseNmGLbleing,YULean,WANGShuai,etal.Anovelhy

bridforecastingle[Jar]n.inAgpppliaerdEadignemrgfyorn,20u1c2le,are93(nSeIr)gy:4c3o2n-s4u43mp

.tionWANGS,YUL,TANGL,etal.Anovelseasonal

edfonersceeocmmasbptloielsitingeoinCanbrnihnaigsedlnaa[Jpe]pars.otsEancehqurgy

faor,ress20h1yu1dp,rpoo3pr6otv(w11eercto):crr6o5n4se2ug

r-6me5ps5tsii4oo.nnpQIUX,RENYboSaeswrieeederrsonanCsmepmobfmloere,pulcSeataasUtrtiniGoinANTnngwagltIeinctHheANPNthmpirica,letal.Short-termwind

elnliiqg

ueensce[C(S]/mS/oCIIdedecomposition)E,EENoSvyemmbpeor2siu7mDecember1,2017,Honolulu,USA:1-8.

-lLoeIragranHniinui,cgdfy

oCeroUI-senveYsiranying,LIUYunlong

,etal.EnsembletailzledposowlearcrceollnsveJrsi.oInEEefEficiAecncceyssoft20h1ea8,l6l-34118-34126.

[],:rHoenCsEidKuaoaimlmleianrgn,inZgHAforNimGagXeiarnegcyougn,itRioEnNS[C]h/a/oqIiEnEgEC,etoanlfe.rDeenecp

e27-30,2p0u1t6erV,LiassVionaeg

nasdP,UatSteArnR:77e0c-o7g

7n8it.ion(CVPR),June张素芳大学学报,翟俊海(自然科学版,王聪,等),.大数据与大数据机器学习[J].

河北ZHANGSufang,ZHAIJ2u0n1h8ai,3,8WA(3)N:2GC99-3o0n8g.

andbigdatamachinelearning[J].JournalofH,eebteialU.nBiivgerdsaittay

[PP.05era[KHA18-[l.rri]3[E]4

[GI[D[an,ssact)3].[E]5[SCatioTr]6[Jiadist[ANing20193neo]7]8denic[ELPl

]9ba[][.M].20/s1]0]1程乐峰,等 机器学习在能源与电力系统领域的应用和展望

(),():NaturalScienceEdition2018,383299-308.

[],rosectJ.AutomationofElectricPowerSstems2017,ppy()::/4141-11.DOI10.7500AEPS20160813002.()06-015.

[]薛禹胜,(赖业宁.大能源思维与大数据思维的融合:一)大数142

/10.7500AEPS20151208005.

]::据与电力大数据[电力系统自动化,J.2016,40(1)1-8.DOI[]谭铁牛.人工智能值得关注的八大趋势[人民邮电,147N].2018-TANTieniu.Eihtmaortrendsworthpainttentiontoingjyga,()TelecommunicationsNews2018-06-015.

[N]’.Peolesp

Post

:thinkinndbiatathinkinPartone biataandpowergagdggd

,LXUEYushenAIYenin.Interationofmacroenerggggy

[]马世龙,]乌尼日·其其格,李小平.大数据与深度学习综述[143J.

,WUN,LMAShilonIRIQiieIXiaoin.Deeearningqgpgplg():智能系统学报,2016,116728-742.

],biata[J.AutomationofElectricPowerSstems2016,gdy

()::/4011-8.DOI10.7500AEPS20151208005.

artificialintelliencegand

[]谭铁牛.人工智能新动态[中国信息化周报,148N].2018-01-()157.

TANTieniu.Newdevelomentofartificialintellience[N].pg

[]薛禹胜,(赖业宁.大能源思维与大数据思维的融合:二)应用144

AEPS20160311004.

,():TransactionsonIntellientSstems2016,116728-742.gy]::/及探索[电力系统自动化,J.2016,40(8)1-13.DOI10.7500

:]withbiatastateoftheartanddeveloment[J.CAAIgdp[]尚宇炜,马钊,彭晨阳,等.内嵌专业知识和经验的机器学习方149

(]法探索:一)引导学习的提出与理论基础[中国电机工程J.():学报,2017,37195560-5571.

,()ChinaInformationWeekl2018-01-157.y

:Pthinkinndbiatathinkinarttwo alicationsandgagdgpp()::/2016,4081-13.DOI10.7500AEPS20160311004.民大学出版社,2016.

,LXUEYushenAIYenin.Interationofmacroenerggggy

:Panovelmachinelearninethodembeddinxertiseartgmgep():ProceedinsoftheCSEE,2017,37195560-5571.g

,MAZ,,SHANGYuweihaoPENGChenanetal.StudfygyoⅠ proosalsandfundamentalsofguidinearninJ].pglg[

,exlorations[J].AutomationofElectricPowerSstemspy

[]吕晓玲,宋捷.大数据挖掘与统计机器学习[北京:中国人145M].

,SLYUXiaolinONGJie.Biatamininndstatisticalggdga,Press2016.

:CmachinelearninM].BeiinhinaRenminUniversitg[jgy

163.com

:_s系统优化运行与控制、机器学习等。E-mailchenlfcut@g:向:复杂电力系统的非线性控制理论和仿真。E-mail

,余 涛(男,通信作者,博士,教授,主要研究方1974—)

,程乐峰(男,博士研究生,主要研究方向:电力1990—)

[]赵俊华,董朝阳,文福拴,等.面向能源系统的数据科学:理论、146

/7500AEPS20160813002.

]::技术与展望[电力系统自动化,J.2017,41(4)1-11.DOI10.

taou1@scut.edu.cny

,张孝顺(男,博士,副教授,主要研究方向:电力1990—):系统优化运行与控制等。E-mailxszhan1990@sina.cng

,D,WE,eZHAOJunhuaONGZhaoanNFushuantal.yg:t,tDatascienceforenerstemsheorechniuesandgysyyq

(编辑 章黎)

MachineLearninorEnerndElectricPowerSstems StateoftheArtandProsectsgfgyayp

1 SchoolofElectricPower SouthChinaUniversitfTechnolo Guanzhou510641 China yogyg

2 GuandoneaboratorfCleanEnerechnolo Guanzhou510641 China ggKyLyogyTgyg4 ColleeofElectricalEnineerin GuanxiUniversit Nannin30004 China ggggyg5

3 ColleeofEnineerin ShantouUniversit Shantou515063 China gggy

1 21 24

CHENGLeenYUTao ZHANGXiaoshun3 YINLineifg fAbstract Thenewgenerationofartificialintellience AIi e AI2 0 hasbecomearesearchhihlihtinrecentyears gggudmentsforotimaldecision-makinhrouhanalzinndlearninareamountofexistinrgenerateddata AI2 0isjgpgtgygagalggosmartgrid SGndenerinterconnection EIfields Tothisend thispaertakesMLinAI2 0asanexamletoreviewthe a gyppincludineinforcementlearnin deelearnin transferlearnin arallellearnin hbridlearnin adversariallearnin andgrgpggpgyggthetheoretical technicalandalicationstudiesofAI2 0 eseciallnthefieldofEEPSinthefuture pppyMLi

develoinaidlinChina andithasbeenpreliminarilliedtotheenerndelectricpowersstem EEPShatcontains tpgrpyyappgyaycurrentalicationofsevenreresentativeMLsinEEPSfromasectsofdisatchotimizationandcontroldecision-makin ppppppgensemblelearnin Finall theprosectsforthefuturedevelomentofMLareconducted trintoprovidesomereferenceforgyppygScienceandTechnoloroectsofChinaSouthernPowerGridComanimited No GZKJQQ00000419 gyPjpyLinterconnection

ThisworkissuortedbationalNaturalScienceFoundationofChina No 51477055 No 51777078ndKe appyNyAmonI2 0 machinelearninsaticalreresentativeisanalorithmcateorhatcomletespredictionsand agAg MLyppggytp

Keords artificialintellience AIachinelearnin enerndelectricpowersstem EEPSsmartgrid ener m gggyaygyyw

://httwww.aes-info.compp

31

机器学习在能源与电力系统领域的应用和展望

()2019,431[]115CRESWELLA,WHITET,DUMOULINV,etal.,():SinalProcessinaazine2018,35153-65.ggMg[]WAN116GK,GOUC,DUANY,etal.Generativeadversarial,():ofAutomaticaSinica2017,44588-598.](
推荐度:
点击下载文档文档为doc格式
5ta1f61zzc4x67j2pwjr92i2p9mf5d01dr2
领取福利

微信扫码领取福利

微信扫码分享