2024年中考数学试卷
一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是符合题目要求的) 1.(3分)计算:|﹣|﹣A.1
B. C.0
的结果是( )
D.﹣1
2.(3分)下列运算正确的是( ) A.(﹣a)3=a3 B.(a2)3=a5
C.a2÷a﹣2=1
D.(﹣2a3)2=4a6
3.(3分)小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是( )
A.30和 20 B.30和25 C.30和22.5 D.30和17.5
是方程x2﹣4x+c=0的一个根,则c的值是( ) C.
D.
4.(3分)若2﹣A.1
B.
5.(3分)某企业2024年初获利润300万元,到2024年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是( ) A.300(1+x)=507 B.300(1+x)2=507 C.300(1+x)+300(1+x)2=507
D.300+300(1+x)+300(1+x)2=507
6.(3分)用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是( )
A.10 B.20 C.10π D.20π
7.(3分)将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )
第1页(共32页)
A.40° B.50° C.60° D.70°
8.(3分)如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是( )
A.
B. C. D.
二、填空题(本题共8小题,每小题3分,共24分)
9.(3分)不透明的布袋里有1个黄球、4个红球、5个白球,它们除颜色外其他都相同,那么从布袋中任意摸出一球恰好为红球的概率是 . 10.(3分)已知m+n=12,m﹣n=2,则m2﹣n2= .
11.(3分)反比例函数y=(k是常数,k≠0)的图象经过点(1,4),那么这个函数图象所在的每个象限内,y的值随x值的增大而 .(填“增大”或“减小”)
12.(3分)已知:=,则
的值是 .
13.(3分)关于x的方程2x2﹣3x+c=0有两个不相等的实数根,则c的取值范围是 .
14.(3分)在平面直角坐标系中,四边形AOBC为矩形,且点C坐标为(8,6),M为BC中点,反比例函数y=(k是常数,k≠0)的图象经过点M,交AC于点N,则MN的长度是 .
第2页(共32页)
15.(3分)一艘货轮以18km/h的速度在海面上沿正东方向航行,当行驶至A
处时,发现它的东南方向有一灯塔B,货轮继续向东航行30分钟后到达C处,发现灯塔B在它的南偏东15°方向,则此时货轮与灯塔B的距离是 km.
16.(3分)如图是各大小型号的纸张长宽关系裁剪对比图,可以看出纸张大小的变化规律:A0纸长度方向对折一半后变为A1纸;A1纸长度方向对折一半后变为A2纸;A2纸长度方向对折一半后变为A3纸;A3纸长度方向对折一半后变为A4纸……A4规格的纸是我们日常生活中最常见的,那么由一张A4的纸可以裁 张A8的纸.
三、解答题(本题共有6个小题,每小题6分,共36分) 17.(6分)解不等式组:
第3页(共32页)
18.(6分)先化简,再求值:(﹣)÷,其中,x=﹣3.
19.(6分)已知:△ABC三个顶点的坐标分别为A(﹣2,﹣2),B(﹣5,﹣4),C(﹣1,﹣5).
(1)画出△ABC关于x轴对称的△A1B1C1;
(2)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2,并写出点B2的坐标.
20.(6分)某区规定学生每天户外体育活动时间不少于1小时.为了解学生参加户外体育活动的情况,对部分学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制成如下的统计表(不完整).
组别 A B C D E 时间(小时) 频数(人数) 0≤t<0.5 0.5≤t<1 1≤t<1.5 1.5≤t<2 2≤t<2.5 20 a 140 80 40 频率 0.05 0.3 0.35 0.2 0.1 请根据图表中的信息,解答下列问题:
(1)表中的a= ,将频数分布直方图补全;
(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有多少名?
第4页(共32页)
(3)若从参加户外体育活动时间最长的3名男生和1名女生中随机抽取两名,请用画树状图或列表法求恰好抽到1名男生和1名女生的概率.
21.(6分)已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N. (1)求证:△ABE≌△BCN;
(2)若N为AB的中点,求tan∠ABE.
22.(6分)某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.
(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?
(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?
四、解答题(本题共4道题,其中23、24题每题8分,25、26题每题10分,
第5页(共32页)