2009-2013广东高考文科数学真题分类汇总-函数
2(2013广东文).函数f(x)?lg(x?1)的定义域是(C )
x?1(1,??) D.[?1,1)(1,??)
A.(?1,??) B.[?1,??) C.(?1,1)212(2013广东文).若曲线y?ax?lnx在点(1,a)处的切线平行于x轴,则a?
1 . 2
21(2013广东文).(本小题满分14分) 设函数f(x)?x?kx?x ?k?R?.
32(1) 当k?1时,求函数f(x)的单调区间;
(2) 当k?0时,求函数f(x)在?k,?k?上的最小值m和最大值M. 21. 解:f'?x??3x2?2kx?1
'(1)当k?1时f?x??3x2?2x?1,??4?12??8?0
k k3?f'?x??0,f?x?在R上单调递增.
k(2)当k?0时,f?x??3x?2kx?1,其开口向上,对称轴x? ,
3'2-k 1? 且过?0,(i)当??4k?12?4k?32x????k?3??0,即?'3?k?0时,f?x??0,f?x?在
?k,?k?上单调递增,
从而当x?k时,f?x? 取得最小值m?f?k??k ,
当x??k时,f?x? 取得最大值M?f??k???k?k?k??2k?k.
333(ii)当
??4k2?12?4k?3k?3?0????,即
k??3时,令
f'?x??3x2?2kx?1?0
k?k2?3k?k2?3,
解得:x1?注意到k?x2?x1?0, ,x2?33(注:可用韦达定理判断x1?x2?合图像判断)
12k?k,从而k?x2?x1?0;或者由对称结,x1?x2?33?m?min?f?k?,f?x1??,M?max?f??k?,f?x2??
3f?x1??f?k??x1?kx12?x1?k??x1?k??x12?1??0
?f?x?的最小值m?f?k??k,
32f?x2??f??k??x2?kx2?x2???k3?k?k2?k?=?x2?k?[?x2?k??k2?1]?0
2?f?x?的最大值M?f??k???2k3?k
综上所述,当k?0时,f?x?的最小值m?f?k??k,最大值M?f??k???2k?k
3解法2(2)当k?0时,对?x??k,?k?,都有
f(x)?f(k)?x3?kx2?x?k3?k3?k?(x2?1)(x?k)?0,故f?x??f?k?
f(x)?f(?k)?x3?kx2?x?k3?k3?k?(x?k)(x2?2kx?2k2?1)?(x?k)[(x?k)2?k2?1]?0故f?x??f??k?,而 f(k)?k?0,f(?k)??2k?k?0
33所以 f(x)max?f(?k)??2k?k,f(x)min?f(k)?k
4(2012广东文).下列函数为偶函数的是(D)
A.y?sinx B.y?x C.y?e D.y?lnx2?1 11(2012广东文).函数y?3xx?1的定义域为_______[?1,0)?(0,??) _______. x21(2012广东文). (本小题满分14分)
设0?a?1,集合A?x?Rx?0,A?x?R2x?3(1?a)x?6a?0,D?A(1) 求集合D(用区间表示);
???2?B.
(2) 求函数f(x)?2x?3(1?a)x?6ax在D内的极值点. 解:(1)
集合B解集:令2x2?3(1?a)x?6a?0 ??[?3(1?a)]2?4?2?6a
?3(3a?1)(a?3)
32(1):当
1??0时,即:?a?1时,B的解集为:{x|x?R}
3此时D?A?B?A?{x?R|x?0) (2)当??0时,解得a?1,(a?3舍去) 3此时,集合B的二次不等式为:
2x2?4x?2?0,
(x?1)2?0,此时,B的解集为:{x?R,且x?1}
故:D?A?B?(0,1)?(1,??) (3)当??0时,即0?a?此时方程的两个根分别为:
1(a?3舍去) 3x1?(31?a)?3(1?3a)(3?a)
4(31?a)?3(1?3a)(3?a)
4x2?很明显,0?a?时,x2?x1?0 故此时的
13D?A?B?(0,x1)?(x2,??)?(0,(31?a)?3(1?3a)(3?a)(31?a)?3(1?3a)(3?a))?(,??)44
综上所述: 当0?a?当a?131?a)?3(1?3a)(3?a)(31?a)?3(1?3a)(3?a)时,D?(0,()?(,??) 3441时,D?A?B?(0,1)?(1,??) 3
2007-2013广东高考文科数学真题分类汇总---函数



