2024年北京市中学生数学竞赛高一年级初赛试题及
答案
一、选择题(满分36分)
1. 满足条件f(x2)=[f(x)]2的二次函数是 A. f(x)=x2 B. f(x)=ax2+5 C. f(x)=x2+x
D. -x2+2004
2. 在R上定义的函数y=sinx、y=sin2004、 、 中,偶函数的个数是 A. 0
B. 1
C. 2
D. 3
3. 恰有3个实数解,则a等于 A. 0
B. 0.5 C. 1
D.
4. 实数a、b、c满足a+b>0、b+c>0、c+a>0,f(x)是R上的奇函数,并且是个严格的减函数,即若x1
B. f(a)+f(b)+f(c)<0
C. f(a)+f(b)+f(c)>0 D. f(a)+2f(b)+f(c)=2004
5. 已知a、b、c、d四个正整数中,a被9除余1,b被9除余3,c被9除余5,d被9除余7,则一定不是完全平方数的两个数是 A. a、b
B. b、c C. c、d D. d、a
6. 正实数列a1,a2,a3,a4,a5中,a1,a2,a3成等差数列,a2,a3,a4成等比数列,且公比不等于1,又a3,a4,a5的倒数成等比数列,则
A. a1,a3,a5成等比数列 B. a1,a3,a5成等差数列
C. a1,a3,a5的倒数成等差数列 D. 6a1,3a3,2a5的倒数成等比数列 二、填空题(满分64分) 1. 已知 ,试确定 的值。
2. 已知a=1+2+3+4+…+2003+2004,求a被17除的余数。 3. 已知 ,若ab2≠1,且有 ,试确定 的值。
4. 如图所示,等腰直角三角形ABC的直角顶点C在等腰直角三角形DEF的斜边DF上,E在△ABC的斜边AB上,如果凸四边形ADCE的面积等于5平方厘米,那么凸四边形ABFD的面积等于多少平方厘米?
5. 若a,b∈R,且a2+b2=10,试确定a-b的取值范围。
6. a和b是关于x的方程x4+m=9x2的两个根,且满足a+b=4,试确定m的值。
7. 求cos20°cos40°cos60°cos80°的值。
8. 将2004表示为n个彼此不等的正整数的和,求n的最大值。 初赛答案表
选择题:ADCBBA;填空题:1、-0.5 2、1 3、-1 4、10 5、[ , ] 6、49/4 7、1/16 8、62