DE6?sin∠DGE = EG = 3 (Ⅱ)解法二:由AC = CB = 则 2AB ?AC2 + CB2 = AB2 ?AC⊥BC,建立如图所示的坐标系,设AA1 = 2,2 CA1 = (2, 0, 2), CD = (1, 1, 0), CE = (0, 2, 1), →→→→??m? C?x1 + z1 = 0A1 = 0设m = (x1, y1, z1)是平面A1DC的法向量,则?? ? x→?1 + y1 = 0?m? CD = 0 ?可取m = (?1, 1, 1) →??m? C?x2 + z2 = 0A1 = 0同理设n = (x2, y2, z2)是平面A1EC的法向量,则?? ? 2y2 + z2 = 0→???m? CE = 0 可取n = (2, 1, ?2), cos
(Ⅲ)T可能的取值有T1 = 800×105 ??39000 = 45000, T2 = 800×115 ??39000 = 53000, T3 = 800×125 ??39000 = 61000, T4 = 65000 T的分布列如下: T P 45000 0.1 53000 0.2 61000 0.3 65000 0.4 所以ET = 45000×0.1 + 53000×0.2 + 61000×0.3 + 65000×0.4 = 59400 所以T的数学期望为59400 (20)(本小题满分12分)
2y 2x平面直角坐标系xOy中,过椭圆M: — + — =1(a > b > 0)的右焦点的直线x + y??3 = 0交M于A,B两 2 2ab 1点,P为AB的中点,且OP的斜率为 . 2(Ι)求M的方程
(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD的面积最大值. 【解】(Ⅰ)设A (x 1, y 1) ,B (x 2, y 2),P (x 0, y 0)
222222?y 1 ? y 2b2(x 1 + x 2)b2x 0?bx1 + ay1 = ab
??222222 ? = ? 2 ? kAB = ???2
x 1 ? x 2a(y 1 + y 2)ay 0?bx2 + ay2 = ab?
x 01
OP的斜率为 ? = 2,直线x + y??3 = 0的斜率为?1 ? kAB =?1
2y 0
2b2
??1= ??a2 ? a2 = 2b2 ……①
由题意知直线x + y??3 = 0与x轴的交点F(3,0)是椭圆的右焦点,则才c = 3 ?a2 ??b2 = 3 ……②
联立解得①、②解得a2 = 6,b2 = 3
所以M的方程为:— + — = 1
63
x 2
y 2
??x + y?? 23 = 043346(Ⅱ)联立方程组?x 2y,解得A( , ? )、B(0, 3),求得| AB | =
333— + — = 1??63
依题意可设直线CD的方程为:y = x + m
53
CD与线段AB相交? ?? < m < 3
3
x + m??y =
联立方程组?x 2y 2 消去x得:3x 2 + 4mx +2m2 ? 6 = 0 …… (*)
— + — = 1??63
设C (x 3, y 3),D (x 4, y 4),则| CD |2 = 2(x 3 ? x 4)2 = 2[(x 3 + x 4)2 ??4x 3x 4]= 1862四边形ACBD的面积S = | AB |? | CD | =
29 9?m 86
当n = 0时,S最大,最大值为3 . 86
所以四边形ACBD的面积最大值为3 .
第 7 页 共 22 页
162 (9 ? m) 9
(21)(本小题满分12分)
已知函数f (x ) = ex??ln(x + m)
(Ι)设x = 0是f (x )的极值点,求m,并讨论f (x )的单调性; (Ⅱ)当m ≤2时,证明f (x ) > 0 .
【解】(Ⅰ)f '(x ) = ex?
1
x + m
x = 0是f (x )的极值点 ? f '(0) = 0 ? m = 1.
此时,f '(x ) = ex?
1
x + 1 在(?1, +∞)上是增函数,又知f '(0) = 0,
所以x∈(?1, 0)时, f '(x ) < 0;x∈(0, +∞)时, f '(x ) > 0.
所以f (x )在(?1, 0)上是减函数,在(0, +∞) 上是增函数. (Ⅱ)如图所示,当m ≤2时,x + 1≥x + m ? 1 只需证明ex≥x + 1,且ln(x + m)≤x + m ? 1
y再指出“=”不能成立即可.
设g (x ) = ex??(x +1),g '(x ) = ex??1
y=exy=x+1y=x+m-1y=ln(x+m)xx1 = 0是g (x )的极小值点,也是最小值点,即 g (x ) ≥ g (0) = 0 ?ex≥x + 1 设h (x ) = ln(x + m)???(x + m ? 1)
oh '(x ) =
1
x + m ??1
x2 = 1??m是h (x )的极大值点,也是最大值点,即 g (x ) ≤ h (1??m) = 0 ? ln(x + m)≤x + m ? 1
?ex≥ln(x + m) ?f (x )≥0,“=”成立的条件是:x1 = x2 且x + 1 = x + m ? 1
即m =1且m =2(矛盾) 所以f (x ) > 0
(22)(本小题满分10分)选修4-1几何证明选讲 如图,CD为△ABC外接圆的切线,AB的延长线交直线CD 于点D,E、F分别为弦AB与弦AC上的点, 且BC?AE = DC?AF,B、E、F、C四点共圆. (Ι)证明:CA是△ABC外接圆的直径;
D(Ⅱ)若DB =BE = EA,求过B、E、F、C四点的圆
的面积与△ABC外接圆面积的比值。 【解】(Ⅰ)CD为△ABC外接圆的切线 ?∠BCD = ∠A, BCDCBC?AE = DC?AF ? = ,则△BCD ∽ △AEF ?∠CBD =∠AFE
FAEA
CFBEAB、E、F、C四点共圆 ?∠CBD =∠CFE ?∠AFE =∠CFE = 90o
?∠CBD = 90o ?∠CBA = 90o ?CA是△ABC外接圆的直径.
(Ⅱ)连结CE,由∠CBA = 90o知CE为过B、E、F、C四点的圆的直径,设BD = a,在直角三角形ACD中,BC2 = BD?BA = 2a2
BD =BE ?CE2 =DC2 = BD2 +BC2 = 3a2 AC2 =AD?AB = 6a2
第 8 页 共 22 页
CE21
所以两圆的面积之比为 2 = . AC2
(23)(本小题满分10分)选修4-4;坐标系与参数方程
?x = 2cost
已知动点P,Q都在曲线C:? (t是参数)上,对应参数分别为t?=??与t?=2? (0 <2? ), M为PQ
?y = 2sin t
的中点.
(Ⅰ)求M的轨迹的参数方程;
(Ⅱ)将M到坐标原点的距离d表示为? 的函数,并判断M的轨迹是否过坐标原点. 【解】(Ⅰ)P(2cos??, 2sin??),Q(2cos2??, 2sin2??) ?M (cos? + cos2??, 2sin??+ sin2? ?)
?x = cos? + cos2??所以M的轨迹的参数方程为:? ( ??是参数,0 < ? < 2? )
?y = 2sin??+ sin2? (Ⅱ)d =
x 2 + y 2 = 2+2cos? ( 0 < ? < 2? )
当? = ?时,d = 0,所以M的轨迹过坐标原点.
(24)(本小题满分10分)选修4-5;不等式选讲 设a,b,c均为正数,且a + b + c =1,证明: 1
(Ⅰ)ab + bc + ac ≤ ;
3
a2b2c2
(Ⅱ) + + ≥1
bca
【解】(Ⅰ)由a2 + b2 ≥2ab,b2 + c2 ≥2bc,a2 + c2 ≥2ac得
a2 + b2 + c2≥ab + bc + ac ? (a + b + c)2 = (a2 + b2 + c2) + 2(ab + bc + ac) ≥3(ab + bc + ac) ? 1≥3(ab + bc + ac)
1
?ab + bc + ac ≤3 .
a2b2c2
(Ⅱ)证法一:因为 + b ≥2a, + c ≥2b, + a ≥2c
bcaa2b2c2
所以 ( + + )+(a + b + c) ≥2(a + b + c)
bca
a2b2c2
? b + c + a + 1 ≥2
a2b2c2
? b + c + a ≥1
a2b2c2
证法二:由柯西不等式得:( + + )( b + c + a)≥ (a + b + c)2
bcaa2b2c2
? b + c + a ≥1
第 9 页 共 22 页
2013新课标Ⅱ卷(理)
一、选择题
1.已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N等于( ) A.{0,1,2}
B.{-1,0,1,2} D.{0,1,2,3}
C.{-1,0,2,3} 答案 A
解析 化简集合M得M={x|-1 2i?1+i?2i 解析 由已知得z===-1+i. 1-i?1-i??1+i? 3.等比数列{an}的前n项和为Sn,已知S3=a2+10a1,a5=9,则a1等于( ) 1111A. B.- C. D.- 3399答案 C 解析 设等比数列{an}的公比为q,由S3=a2+10a1得a1+a2+a3=a2+10a1,即a3=9a1,q2=9,又a5=a1q41=9,所以a1=. 9 4.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l?α,l?β,则( ) A.α∥β且l∥α B.α⊥β且l⊥β C.α与β相交,且交线垂直于l 第 10 页 共 22 页 B.-1-i D.1-i