?3ex(3x2?23x?2)?C. 5. 求
3x?3?x2?5x?6dx.
x?3?56??解:由上述可知2,所以
x?5x?6x?2x?3x?3?5611dx?(?)dx??5dx?6?x2?5x?6?x?2x?3?x?2?x?3dx
??5lnx?2?6lnx?3?C.
6. 求定积分?dx. 301?x832解:令3x?t,即x?t,则dx?3tdt,且当x?0时,t?0;当x?8时,t?2,于是
223tdtdx?12?2??3t?t?ln(1?t)?3ln3. ?01?3x?01?t???2?08 7. 计算
??0x2cosxdx.
解:令u?x2,dv?cosxdx,则du?2xdx,v?sinx,于是
??0x2cosxdx??x2dsinx?(x2sinx)?0??2xsinxdx??2?xsinxdx.
000???再用分部积分公式,得
?
8. 求
?0x2cosxdx?2?xdcosx?2?(xcosx)?0???0??cosxdx?
?0?? ?2?(xcosx)??0??sinx?0???2?.
1?x2?2x?8dx.
解:
1113?(x?1)dx?d(x?1)?ln?C ?x2?2x?8?(x?1)2?963?(x?1)12?xln?C. 64?x ?9. 求
dx?1?3x?2.
3解:令u?x?2,则x?u3?2,dx?3u2du,从而有
dx3u2u2?1?1 ???du?3?du
31?u1?u1?x?21u2)du?3(?u?ln1?u)?C ?3?(u?1?1?u211. 求
??212xe?xdx
2解:
?2122xe?x2dx??e12?x2dx?e2?x221?e?4?e?1
12. 求3x3?x3dx
2解:3x
13. 求
?3?xdx???332323?xd(3?x)??(3?x)?C
333?e1ln2xdx x解:
?e1eln2x111dx??ln2xd(lnx)?lnx?lne?
1x3331e14.求x3?xdx
3311212222223?xd(3?x)???(3?x)?C??(3?x)?C 解:?x3?xdx???22332?2
三、解答题
11. 若lim3x?ax2?x?1?,求a
x??6??解:因为3x?ax?x?1?29x2?ax2?x?13x?ax?x?12,所以a?9
否则极限不存在。
1322.讨论函数f(x)?x?2x?3x?3的单调性并求其单调区间
3解:f'(x)?x2?4x?3
由f'(x)?x2?4x?3?0得x1?1,x2?3
所以f(x)在区间(??,1)上单调增,在区间(1,3)上单调减,在区间(3,??)上单调增。
x2?x?23. 求函数f(x)?的间断点并确定其类型
x?2解:函数无定义的点为x?2,是唯一的间断点。 因limf(x)?3知x?2是可去间断点。
x?24. 设xy2?sinx?exy,求y?.
解:y2?2xy?y??cosx?exy(y?y?),
y(exy?y)?cosx故 y??
x(2y?exy)
(x?1)3x?25. 求y?的导数.
(x?3)5解:对原式两边取对数得:
1lny?3ln(x?1)?ln(x?2)?5ln(x?3),
2于是
y?3115????, yx?12x?2x?3(x?1)3x?23115[???]. 故 y??5x?12x?2x?3(x?3)
?x?acost6. 求由方程? 确定的导数y?x.
y?bsint?y?(t)bcostb2x???2. 解: y?x?x?(t)?asintay?1x?e,x?0?7. 函数f(x)??1,x?0在x?0处是否连续?
?tanx,x?0??
1xf(x)?lime?0 解:lim??x?0x?0x?0?limf(x)?limtanx?0 ?x?0故在x?0处不连续。
?1x?e,x?0?8. 函数f(x)??1,x?0在x?0处是否可导?
?tanx,x?0??f(x)?f(0)e?1?lim??
x?0x?0?xx所以在x?0处不可导。 解:因为lim?
2y?x9. 求抛物线与直线y?x所围成图形D的面积A.
1x
?y?x?x?0?x?1解: 求解方程组?,?,见图6-9,所以该图2得直线与抛物线的交点为?y?xy?1y?0???形在直线x?0与x=1之间,
y?x2为图形的下边界,y?x为图形的上边界,故
31?12??x?2A???x?x?dx??x?????.
0?2?0?3?06111
10. 计算由抛物线y2?2x与直线y?x?4围成的图形D的面积A.
?y2?2x解:求解方程组?得抛物线与直线的交点(2,?2)和(8,4),见图6-10,下面分两种
?y?x?4方法求解.
y2 方法1 图形D夹在水平线y??2与y?4之间,其左边界x?,右边界x?y?4,
2故 A???yy?y?4?dy????2??2?2????422y??4y??6??2341?. 8方法2 图形D夹在直线x?0与x?8之间,上边界为y?2x,而下边界是由两条曲线y??2x与y?x?4分段构成的,所以需要将图形D分成两个小区域D1,D2,故
??A???2x?(?2x)??dx??2?2x??x?4??dx 0?32??232x?22?x2??2?x2??4x??18.
30?32?22828
11. 设y是由方程y?siny?xey确定的函数,求y? 解:两边对x求导得
y'?y'cosy?ey?xeyy'
ey整理得y'?
1?cosy?xey12.求证: lnx?x?1,x?1 证明:令f(x)?(x?1)?lnx
因为f'(x)?1?1x?1??0 xxx?1。
所以f(x)?0,
高数一试题及答案
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)