高等数学公式
高等数学公式
导数公式:
(tgx)??secx(ctgx)???cscx(secx)??secx?tgx(cscx)???cscx?ctgx(ax)??axlna(logax)??1xlna22(arcsinx)??11?x21(arccosx)???1?x21(arctgx)??1?x21(arcctgx)???1?x2基本积分表:
三角函数的有理式积分:
?tgxdx??lncosx?C?ctgxdx?lnsinx?C?secxdx?lnsecx?tgx?C?cscxdx?lncscx?ctgx?Cdx1x?arctg?C?a2?x2aadx1x?a?ln?x2?a22ax?a?Cdx1a?x?ln?a2?x22aa?x?Cdxx?arcsin?C?a2?x2a?2ndx2?cos2x??secxdx?tgx?Cdx2?sin2x??cscxdx??ctgx?C?secx?tgxdx?secx?C?cscx?ctgxdx??cscx?Cax?adx?lna?Cx?shxdx?chx?C?chxdx?shx?C?dxx2?a2?ln(x?x2?a2)?C?2In??sinxdx??cosnxdx?00n?1In?2n???x2a22x?adx?x?a?ln(x?x2?a2)?C22x2a2222x?adx?x?a?lnx?x2?a2?C22xa2x2222a?xdx?a?x?arcsin?C22a222u1?u2x2dusinx?, cosx?, u?tg, dx?21?u21?u21?u2 1 / 12
高等数学公式
一些初等函数: 两个重要极限:
ex?e?x双曲正弦:shx?2ex?e?x双曲余弦:chx?2shxex?e?x双曲正切:thx??chxex?e?xarshx?ln(x?x2?1)archx??ln(x?x2?1)11?xarthx?ln21?x三角函数公式: ·诱导公式:
函数 角A -α 90°-α 90°+α 180°-α 180°+α 270°-α 270°+α 360°-α 360°+α
sinx lim?1x?0 x1
lim(1?)x?e?2.718281828459045...x?? x
sin cos tg -tgα ctgα ctg -ctgα tgα -ctgα ctgα tgα -ctgα ctgα -sinα cosα cosα cosα sinα sinα -sinα -ctgα -tgα -cosα -tgα -sinα -cosα tgα -cosα -sinα ctgα -cosα sinα -sinα cosα sinα cosα -tgα tgα -ctgα -tgα
·和差角公式: ·和差化积公式:
sin(???)?sin?cos??cos?sin?cos(???)?cos?cos??sin?sin?tg??tg?tg(???)?1?tg??tg?ctg??ctg??1ctg(???)?ctg??ctg?
sin??sin??2sin???22??????sin??sin??2cossin22??????cos??cos??2coscos22??????cos??cos??2sinsin22cos??? 2 / 12
高等数学公式 ·倍角公式:
sin2??2sin?cos?cos2??2cos2??1?1?2sin2??cos2??sin2?ctg2??1ctg2??2ctg?2tg?tg2??1?tg2?
·半角公式:
sin3??3sin??4sin3?cos3??4cos3??3cos?3tg??tg3?tg3??1?3tg2?sintg?2????1?cos??1?cos? cos??2221?cos?1?cos?sin??1?cos?1?cos?sin??? ctg????1?cos?sin?1?cos?21?cos?sin?1?cos?abc???2R ·余弦定理:c2?a2?b2?2abcosC sinAsinBsinC?2
·正弦定理:
·反三角函数性质:arcsinx??2?arccosx arctgx??2?arcctgx
高阶导数公式——莱布尼兹(Leibniz)公式:
(uv)(n)k(n?k)(k)??Cnuvk?0n?u(n)v?nu(n?1)v??n(n?1)(n?2)n(n?1)?(n?k?1)(n?k)(k)uv?????uv???uv(n)2!k!
中值定理与导数应用:
拉格朗日中值定理:f(b)?f(a)?f?(?)(b?a)f(b)?f(a)f?(?)柯西中值定理:?F(b)?F(a)F?(?)曲率:
当F(x)?x时,柯西中值定理就是拉格朗日中值定理。弧微分公式:ds?1?y?2dx,其中y??tg?平均曲率:K???.??:从M点到M?点,切线斜率的倾角变化量;?s:MM?弧长。?sy????d? M点的曲率:K?lim??.?s?0?sds(1?y?2)31.a 3 / 12
直线:K?0;半径为a的圆:K?