微专题20
例题导引 例题
答案: (1)an=2n-1,bn=n; (2)①Tn=2n+1-n-2;
(Tk+bk+2)bk(k+1)(k+2)
=
(2k+1-k-2+k+2)k(k+1)(k+2)
=
k·2k+1
(k+1)(k+2)
=2k+2k+2
②因为2k+1
-, k+1
2n+22n+12n+223222423
所以,? =(-)+(-)+…+(-)=-2.结论得
3243(k+1)(k+2)n+2n+1n+2k=1
n
(Tk+bk+2)bk
证..
变式联想
变式 1
n2+3n
答案: (1)Bn=;(2)[3,+∞).
2
变式 2
an1
答案: (1)证明:由an+1=+n,得3nan+1=3n-1an+1.又bn=3n-1an,所以bn
33
+1=bn+1.又
b1=a1=1,
所以数列{bn}是以1为首项,1为公差的等差数列; n3+2n2
(2)Sn=.
2
串讲激活 串讲1
答案: (1)an=2n.
n+1
(2)由于an=2n,bn=
n+1
,
(n+2)2a2n
则bn=
4(n+2)2n2
11?1-?
=?n2.
(n+2)2?16??1111111111
所以Tn=1-2+2-2+2-2+…+-+- 2
1632435(n-1)2(n+1)2n(n+2)2111111?5
1+2?=. =1+2--<2?64162(n+1)2(n+2)216?串讲 2
ana2n
解析: 证明:因为1=a1≤a2≤…≤an≤…,故an>0,0<≤1,于是0<2≤1.
an+1an+1
?1-an?1?1+an??1-an?1?1+an??1-1?an
所以bn=?a2?·=?a??a?·=?a??ana?·≤
n+1?an+1n+1??n+1?an+1n+1??n+1?an+1???
11??11??1-1??1-1??1-1??2?an.故Sn=b1+b2+…+bn≤2?a-a?+2?a-a?+…+2?an=2??=an+1?an+1?1223?????a1an+1?
?1-1?2?a?<2.
n+1??
新题在线 例题
n
答案: (1)an=n,bn=n;
2
11(2)-. 2(n+1)2n+1
2