(1)求an及Sn; (2)令bn?1*n?N??,求数列?bn?的前n项和Tn. 2an?118.已知函数f?x??33sin?x?cos?x(??0)的周期为4. 22
(1)求f?x?的解析式;
(2)将f?x?的图象沿x轴向右平移图),求?OQP的大小.
?11?3,sinx?cosx19.已知向量a????22?与b??1,y?共线,设函数y?f?x?. 2??2个单位得到函数g?x?的图象,P,Q分别为函数g?x?图象的最高点和最低点(如3(1)求函数f?x?的最小正周期及最大值.
??21?(2)已知锐角?ABC的三个内角分别为A,B,C,若有f?A???3,边BC?7,sinB?,求?ABC的面积.
37??20.已知二次函数f(x)?ax2?bx的图象过点??4n,0?,且f??0??2n,n?N*. (1)求f?x?的解析式;
(2) 设数列?an?满足an?f???n??2n,求数列?an?的前n项和. 21.已知函数f(x)?lnx?ax(a?R). (1)求函数f?x?的单调区间
(2)当a?0时,求函数f?x?在?1,2?上的最小值 22.已知函数f?x??(1)求a,b的值;
(2)如果当x?0,且x?1时,f(x)???alnxb?,曲线y?f?x?在点?1,f?1??处的切线方程为x?2y?3?0. x?1xlnxk?,求k的取值范围. x?1x
试卷答案
一、选择题
1-5: ACAAD 6-10: DBDBC 11、12:CC 二、填空题
15?13. ? 14. 5 15. 16.①③④
76三、解答题
17. 解:(1)设等差数列?an?的首项为a1,公差为d. ?a1?2d?7,因为a3?7,a5?a7?26,所以?
2a?10d?26,?1?a?3,解得?1
d?2.?所以an?3?2?n?1??2n?1, Sn?3n?n?n?1?2?2?n2?2n.
(2)由(1)知an?2n?1, 所以bn?1111??? 2an?1?2n?1??14n?n?1?2?1?11?????, 4?nn?1?1?111??1????4?223?11??? nn?1?所以Tn??1?1?n, ??1???4?n?1?4?n?1?即数列?bn?的前n项和Tn?18.解:(1)f?x??n.
4?n?1?33sin?x?cos?x 22?1?3?3?sin?x?cos?x??2? 2???????3?sin?xcos?cos?xsin?
33??????3sin??x??.
3??2???. 42????∴f?x??3sin?x??.
3??2∵T?4,??0,∴??(2)将f?x?的图象沿x轴向右平移
2???个单位得到函数g?x??3sin?x?. 3?2?∵P,Q分别为该图象的最高点和最低点, ∴P1,3,Q3,?3. ∴OP?2,PQ?4,OQ?12. OQ2?PQ2?OP23?∴cos?OQP?.
2OQ?QP2????∴?OQP??6.
19.解:(1)因为a与b共线, 所以
?11?13y??,sinx?cosx??22??0, 22??则y?f(x)?2sin(x?),所以f?x?的最小正周期T?2?.
3当x?2k????6,k?Z时,f?x?max?2.
???(2)因为f?A???3,
3??所以sinA?又sinB?3?BCAC.因为0?A??,所以A?.由正弦定理得, ?23sinAsinB21321133,所以AC?2,且sinC?,所以S?ABC?AC?BC?sinC?. 71422?b?2n,20.解:(1)由f??x??2ax?b,∴?2
16na?4nb?0.?11解之得a?,b?2n,即f?x??x2?2nx?n?N*?.
22(2)an?f???n??2n?n?2n 设Sn?21?2?22?3?23?2Sn?22?2?23??n?2n
??n?1??2n?n?2n?1
?Sn?21?22?23??2n?n?2n?1
?2n?1?2?n?2n?1
∴Sn??n?1?2n?1?2 21.解:(1)f??x??1?a?x?0?, x1?a?0,即函数f?x?的单调増区间为?0,??? x11?a?0,可得 x?, xa①当a?0时,f??x??②当a?0时,令f??x??当0?x?11?ax时,f??x???0; ax11?ax?1??1?当x?时,f??x???0,故函数f?x?的单调递增区间为?0,?,单调递减区间为?,???.
ax?a??a?(2)①当②当
1?1,即a?1时,函数f?x?在区间[?1,2?上是减函数,所以f?x?的最小值是f?2??ln2?2a. a11?2,即0?a?时,函数f?x?在区间?1,2?上是增函数,所以f?x?的最小值是f?1???a. a211?1??1?③当1??2,即?a?1时,函数f?x?在?1,?上是增函数,在?,2?上是减函数.
a2?a??a?又f?2??f?1??ln2?a, 所以当
1?a?ln2时,最小值是f?1???a; 2当ln2?a?1时,最小值为f?2??ln2?2a. 综上可知,
当0?a?ln2时,函数f?x?的最小值是?a; 当a?ln2时,函数f?x?的最小值是ln2?2a. ?x?1?a??lnx?x??b, 22.解:(1)f??x???2x2?x?1?1由于直线x?2y?3?0的斜率为?,且过点?1,1?,
2?f?1??1,?b?1,??故?1 1即?a?b??,?f1??,?????22?2解得a?1,b?1.
?k?1??x2?1??1?lnx1?lnxk??2lnx??. (2)由(1)知f?x??????,所以f?x???2??x?1x1?xxx?1x????考虑函数h?x??2lnx??k?1??x2?1?x?x?0?,则h??x??2?k?1??x2?1??2xx2.
(ⅰ)设k?0,由h??x??k?x2?1???x?1?x2知,当x?1时,h??x??0.而h?1??0,故
当x??0,1?时,h(x)?0,可得
1h?x??0; 1?x21h?x??0 1?x2lnxk?lnxk?从而当x??,且x?1时,f?x??????0,即f?x???.
x?1xx?1x??当x??1,???时,h(x)?0,可得
?1?(k?1) (x2?1)?2x?0,故h?(x)?0,而h?1??0, (ⅱ)设 0?k?1.由于当x??1,?时,
?1?k?1?1?故当x??1,时,,可得h(x)?0h?x??0,与题设矛盾. ?1?x2?1?k?(ⅲ)设k?1.此时h?(x)?0,而h?1??0,故当x??1,???时,h(x)?0,可得的取值范围为???,0?.
1h?x??0,与题设矛盾.综合得,k21?x