第一章 数理统计的基本概念
课后习题参考答案
设对总体X得到一个容量为10的子样值:,,,,,,,,,,试分别计算子样均值X和子样方差
?S2的值。
解:X1,X2根据 X?Xn为总体X的样本,
1(X1?X2?n2?Xn) 求得X=;
1n22根据S??(Xi?X) 求得S=。
ni?1
设总体X的分布函数为F?x?,密度函数为f?x?,X1,X2,?,Xn为X的子样,求最大顺序统计量X?n?与最小顺序统计量X?1?的分布函数与密度函数。 解:
将总体X中的样本按照从小到大的顺序排列成X?1??X?2????X?n?
Fn?x??P?xn?x??P?x1?x?P?x2?x??P?xn?x???F?x??
nfn?x???Fn?x???nFn?1?x?f?x?
'?1??1?P?x1?x???1?P?x2?x????1?P?xn?x???1??1?F?x??nF1?x??P?x1?x??1?P?x1?x?P?x2?x??P?xn?x?
f1?x???F1?x??'?n?1?F?x??
n?1f?x?
设总体X服从正态分布N(12,4),今抽取容量为5的子样X1,X2,?,X5,试问: (1)子样的平均值X大于13的概率为多少
(2)子样的极小值(最小顺序统计量)小于10的概率为多少 (3) 子样的极大值(最大顺序统计量)大于15的概率为多少 解:
~N??,?2?,X?1n?nXXi
I?1?E?X??1?n?1?n??2nE???X12,D?X??4i????i?1?n2D???Xi???i?1?n5X~N??4?
?12,5??P?X?13??1-P?X?13??1-P??X-?13?12???(1)??/n?4/5???1?P??X-??
???1?0.8686?0.1314??/n?1.12??55P?X1-?P?X?X-?10?12?min?10??i?10??1-?P?i(2) i?1i?1???2??5?1-?P?
?Xi-??1???1??0.8412?5?0i?1???.578555P?X1-?P?X?Xi-?15?12?max?15??i?15??1-?P?(3) i?1i?1???2??5?1-?P?
?Xi-??1.5???1??0.93315?5?0.i?1???2923
试证: nn(1)
?(x?a)22i??(xi?x)?n(x?a)2 对任一实数a成立。并 i?1i?1na?x时,?(x2i?a)达到极小。
i?1n2)?(x2n221n(i?x)??1?xi?nx 其中 x?ii?1n?xi
i?1
证明:
nn(1)
?(x?a)2??(x?x?x?a)2ii
i?1i?1n ??(x?x)2ni??(x?a)2?2i?1i?1?n(xi?x)(x?a)
i?1
且此证明当
??(x?x)??(x?a)2ii?1ni?1nnn2?2(x1?x2??xn?nx)(x?a)
??(x?x)??(x?a)2ii?1ni?12
?n?(x?x)ii?12i2?n(x?a)2
n
?(x?a)??xi?1i?1nin2i?na?2a?xi
2i?12 ??x?n(ai?1?2ax)
求函数的极值,对变量进行求导,这里对变量a求导 得 2a?2x?0 即 a?x
根据数学分析中的结论,当仅有一个极值时,那么同时也 是其相应的最值。 (2)
?(x?x)??x?nx2iii?1i?1n2nn2?2x?xi
i?1n ??xi?nx?2x(x1?x2?i?1n?xn)
??x?nxii?1n2?2nx
2 ??xi?nx
i?121n 设X1,X2,?,Xn为正态总体N??,??的样本,令d??Xi??
ni?122?2??试证:E?d?? ?,D?d???1????n??2证明:
2令yi?xi?? 则yi~N0,?
??E?d??E?yi??2???0yif?yi?dyi?2???0yi12??ey?i2?22dyi?2??
1?1n?1nD?d??D??xi????2?D?xi????2n?ni?1?ni?11n?222??2??2?2????????1???ni?1?????n 设总体X服从正态N?,???E?x???nii?12??E?xi????2?
?2?,X,X12,?,Xn为其子样,X与S2分别为子样均值与方差。
又设Xn?1与X1,X2,?,Xn独立同分布,试求统计量Y?解:
XN?1?XSn?1的分布。 n?11n1n??E?Xn?1?X??E?Xn?1??Xi??E?Xn?1???E?Xi??0
ni?1?ni?1?1n?1??n?1?n?1n?12?n?1D?Xn?1?X??D?Xn?1??Xi???? ?D?Xn?1??2D?Xi??nnnnn?i?1?????2?Xn?1?X~N??0,n?n?1???
??又?2nS2?2~?2?n?1?
Xn?1?Xn?1?X?Xn?Y?N?1SnSn?1? 设Tn?1~t?n?1? n?1t(n),求证 T2N(0,1),YF(1,n)
证明: 设X?2(n),X与Y独立,则称随机变量
t(n)
T?XYn 那么T?2X21 其中X2Yn2?2(1)
根据F分布的定义得出:T
F(1,n)
设X1,X2,?,Xn独立,同服从指数分布,即密度函数为
??e??x,x?0f?x?????0
?0,x?01n求证2n?X~??2n?,其中X??Xi
ni?12证明:
??e??x,x?0总体X的概率密度函数为:f?x?????0
?0,x?01??2?1?2X?f?2?Xi???e?e 令2?Xi?X,则Xi?2?22?2即2?Xi~??2?
xxn1n2由可加性定理知2n?X?2n??Xi?2??Xi~??2n?
ni?1i?1
设X1,X2,?,Xn1与Y1,Y2,?,Yn2分别来自总体N?1,??2?和N??2,?且相互独立,2??和?是两个已知常数,试求
?X??1??Y??2n1S1?n2S2n1?n2?2222????2????????n?n2??121
1n112的分布,其中S?X?X,S??i2n1i?1n2??2??Yi?1n2i?Y
?2证明:
??2???2?X~N???1,n??,Y~N???2,n??
1?2???又因为X与Y相互独立,
???2?2???故?X??1??Y??2~N??1??2,??n?n???? ?2???1?????又有
n1S12?2~?2?n1?1?,n2S22?2~?2?n2?1?