即 lnu2?1u3x?lnc
得方程通解为 y2?x2?cy3
以x=0,y=1代入上式得c=1. 故所求特解为 y2?x2?y3.
(2)y??xy?yx, yx?1?2.
dy解:设y?ux, 则dx?u?xdudx 原方程可变为
udu?dxx 1积分得 2u2?lnx?lnc.
得方程通解为
y2?2x2(lnx?lnc) 以x=1,y=2代入上式得c=e2
.
故所求特解为
y2?2x2(lnx?2). 9. 利用适当的变换化下列方程为齐次方程,并求出通解:解:设x?X?1,y?Y?1,则原方程化为 Ydu2?5令
u?X?u?XdX?u2?4u
代回并整理得
(4y?x?3)2(y?2x?3)?c, dy??x?y?1解:dx4y?x?1 作变量替换,令 x?X?1,y?Y?0?Y
1?YdYX?dX??YX?4Y??XY原方程化为
1?4X 令Y?uX,则得
分离变量,得 ?1?4u1?4u2du?dXx 积分得
即
2lnX?ln(1?4u2)?arctan2u?c y代回并整理得
ln[4y2?(x?1)2]?arctan2x?1?c.
(3)(x?y)dx?(3x?3y?4)dy?0;
dyd解:作变量替换v?x?y, 则dx?vdx?1
(c?c3).
dvv?1??3v?4 原方程化为 dx代回并整理得 x?3y?2ln(x?y?2)?c.
(4)dy1??1dxx?y.
dudy?1?dx 解:令u?x?y,则dxdu1??u 原方程可化为 dx分离变量,得 udu??dx
12u??x?c1积分得 2
2(x?y)??2x?c. (c?2c1) 故原方程通解为
10. 求下列线性微分方程的通解:
(1)y??y?e?x;
解:由通解公式
(2)xy??y?x2?3x?2;
解:方程可化为
由通解公式得
y??12y?x?3?xx
?cosxdx?e?sinx?e?cosxdxdx?c??e?sinx(x?c).y?e??????解:
(4)y??4xy?4x; ?(?4x)dx?4xe?(?4x)dxdx?c??e2x2?4xe?2x2dx?c?y?e?????? ???解:
?e2x?e?2x?c?ce2x?1(5)(x?2)y??y?2(x?2)3;
2?2?2.
dy1?y?2(x?x)2解:方程可化为 dxx?2
2x4x2y??2y?2x?1x?1 解:方程可化为
11. 求下列线性微分方程满足所给初始条件的特解:
(1)dy11?y?sinx, yx?π?1dxxx;
?1dx1?1??xdx?sinx?1x?y?e?sinxdx?c?[c?cosx]edx?c??????x?x?x解:
以x?π,y?1代入上式得c?π?1,
故所求特解为
y?1(π?1?cosx)x.
(2)y??12(2?3x)y?1, yx?1?03x.
2?3x2dx??x?2?3lnx?c3?x解:
1c??2e. 以x=1,y=0代入上式,得
?11?2?y?x3??ex??22e?. 故所求特解为
12. 求下列伯努利方程的通解: 解:令z?y?y,则有
即为原方程通解.
1?2?111(2)y??y?(1?2x)y433.
dzz?y?3??z?2x?1dx解:令.
即为原方程通解.
13. 求下列各微分方程的通解:
(1)y???x?sinx;
解:方程两边连续积分两次得
(2)y????xex;
解:积分得
y????xexdx?xex?ex?c1
(3)y???y??x;
解:令p?y?,则原方程变为
1y??(c1ex?x?1)dx?c1ex?x2?x?c22故 .
(4)y???(y?)3?y?;
解:设y??p, 则
y???pdpdy
dp?p3?p原方程可化为 dy
?dp2?p??(1?p)??0?即 ?dy
p由p=0知y=c,这是原方程的一个解.
dpdp?1?p2??dy21?p当p?0时,dy 1?y???dx?lnx?c1x解:
1(6)y???1?x2;
解:
1?x(7)xy???y??0;
y???12dx?arcsinx?c1
解:令y??p,则得
p??1dpdxp?0???0xpx
c1x 得
cy??1dx?c1lnx?c2x故 .
(8)y3y???1?0.
p?解:令p?y?,则
y???py3pdpdy.
原方程可化为
14.求下列各微分方程满足所给初始条件的特解:
dp?1?0,pdp?y?3dydy
(1)y3y???1?0,yx?1?1,y?x?1?0;
解:令y??p,则
y???pdpdy,
dp1??1?pdp??3dydyy原方程可化为
由x?1,y?1,y??p?0知,c1??1,从而有
y3?p由x?1,y?1,得c2?1
22x?y?2x 或 y?2x?x2. 故
(2)x2y???xy??1,yx?1?0,y?x?1?1;
解:令y??p,则y???p?.
11p?2xx 原方程可化为
1y??(lnx?c1)x则
以x?1,y??1代入上式得c1?1
p??则 当x=1时,y=0代入得c2?0 故所求特解为
y??1(lnx?1)x
y?12lnx?lnx2.
1,y?y?x?0?0x2?1x?0; ?解:y?arctanx?c1
(3)y???当x?0,y??0,得c1?0 以x=0,y=0代入上式得c2?0
1y?xarctanx?ln(1?x2)2故所求特解为 .
(4)y???y?2?1,yx?0?1,y?x?0?0;
解:令p?y?,则p??y??.
2?p?p?1 原方程可化为
以x?0,y??0代入上式得c1?kπ. 以x=0,y=1代入上式得c2?1
故所求特解为
(5)y???e2y,yx?0?y?x?0?0;
解:令y??p,则
y???ppdpdy.
原方程可化为
dp?e2ydy
2y即 pdp?edy
1212y1p?e?c1222 积分得
以x?0,y?y??0代入上式得c1??1,
2y?p?y??e?1 则
以x=0,y=0代入得
c2?π2,
arcsine?y?x?π2
故所求特解为
π?e?y?sin???x??cosx?2?即. 即y?lnsecx.
(6)y???3y,yx?0?1,y?x?0?2.
dpy??p,y???pdy 解:令
1dpp?3y2原方程可化为 dy
c?0 以x?0,y??p?2,y?1代入得1故 y??p??2y
34dy??由于y?3y?0. 故y??2y,即 y3434?2dx