好文档 - 专业文书写作范文服务资料分享网站

全国通用版高考数学二轮复习专题二数列第1讲等差数列与等比数列学案理

天下 分享 时间: 加入收藏 我要投稿 点赞

第1讲 等差数列与等比数列

[考情考向分析] 1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.数列求和及数列与函数、不等式的综合问题是高考考查的重点,考查分析问题、解决问题的综合能力.

热点一 等差数列、等比数列的运算 1.通项公式

等差数列:an=a1+(n-1)d; 等比数列:an=a1·q2.求和公式 等差数列:Sn=

n-1

.

n?a1+an?

2

=na1+

n?n-1?

d;

2

a1?1-qn?a1-anq等比数列:Sn==(q≠1).

1-q1-q3.性质 若m+n=p+q,

在等差数列中am+an=ap+aq; 在等比数列中am·an=ap·aq.

例1 (1)(2018·全国Ⅰ)记Sn为等差数列{an}的前n项和,若3S3=S2+S4,a1=2,则a5等于( ) A.-12 C.10 答案 B

解析 设等差数列{an}的公差为d,由3S3=S2+S4,

3×?3-1??2×?2-1?4×?4-1??×d?=2a1+得3?3a1+×d+4a1+×d,将a1=2代入上式,解得222??

B.-10 D.12

d=-3,

故a5=a1+(5-1)d=2+4×(-3)=-10. 故选B.

(2)(2018·杭州质检)设各项均为正数的等比数列{an}中,若S4=80,S2=8,则公比q=________,a5=________.

1

答案 3 162

解析 由题意可得,S4-S2=qS2,代入得q=9. ∵等比数列{an}的各项均为正数, ∴q=3,解得a1=2,故a5=162.

思维升华 在进行等差(比)数列项与和的运算时,若条件和结论间的联系不明显,则均可化成关于a1和d(q)的方程组求解,但要注意消元法及整体计算,以减少计算量.

跟踪演练1 (1)设公比为q(q>0)的等比数列{an}的前n项和为Sn,若S2=3a2+2,S4=3a4+2

2

2,则a1等于( ) A.-2 B.-1 C.12

2 D.3

答案 B

解析 S4-S2=a3+a4=3a4-3a2,

即3a2

2+a3-2a4=0,即3a2+a2q-2a2q=0, 即2q2

-q-3=0,解得q=-1(舍)或q=32,

当q=3

2时,代入S2=3a2+2,

得a1+a1q=3a1q+2,解得a1=-1.

(2)(2018·全国Ⅲ)等比数列{an}中,a1=1,a5=4a3. ①求{an}的通项公式;

②记Sn为{an}的前n项和,若Sm=63,求m. 解 ①设{an}的公比为q,由题设得an-1

n=q.

由已知得q4

=4q2

,解得q=0(舍去),q=-2或q=2. 故a-1

n=(-2)

n-1

或an=2

n(n∈N*

).

n②若an=(-2)

n-1

,则S1-?-2?

n=3

. 由Smm=63得(-2)=-188,此方程没有正整数解. 若an-1

n=2

,则Sn=2n-1.

由S2mm=63得=64,解得m=6. 综上,m=6.

热点二 等差数列、等比数列的判定与证明 证明数列{an}是等差数列或等比数列的证明方法 (1)证明数列{an}是等差数列的两种基本方法: ①利用定义,证明a*

n+1-an(n∈N)为一常数;

②利用等差中项,即证明2an=an-1+an+1(n≥2,n∈N*

).

2

(2)证明数列{an}是等比数列的两种基本方法: ①利用定义,证明

an+1*

(n∈N)为一常数; an2

*

②利用等比中项,即证明an=an-1an+1(n≥2,n∈N).

11

例2 已知数列{an},{bn},其中a1=3,b1=-1,且满足an=(3an-1-bn-1),bn=-(an-1

22-3bn-1),n∈N,n≥2.

(1)求证:数列{an-bn}为等比数列;

?2?

?的前n项和Tn. (2)求数列?

?anan+1?

n*

1?1?(1)证明 an-bn=(3an-1-bn-1)-?-?(an-1-3bn-1)=2(an-1-bn-1), 2?2?又a1-b1=3-(-1)=4,

所以{an-bn}是首项为4,公比为2的等比数列. (2)解 由(1)知,an-bn=2

n+1

,①

1?1?又an+bn=(3an-1-bn-1)+?-?(an-1-3bn-1)=an-1+bn-1,

2?2?又a1+b1=3+(-1)=2,

所以{an+bn}为常数数列,an+bn=2,② 联立①②得,an=2+1,

211=n=n-n+1, n+1

anan+1?2+1??2+1?2+12+1所以Tn=?=2

nnn?11-21?+?21-31?+…+?n1-n+1?

1??????2+12+1??2+12+1??2+12+1?

1111*-=-(n∈N). 1n+1n+1

2+12+132+1

思维升华 (1)判断一个数列是等差(比)数列,也可以利用通项公式及前n项和公式,但不能作为证明方法.

(2)an=an-1an+1(n≥2)是数列{an}为等比数列的必要不充分条件,判断时还要看各项是否为零.

2

3

跟踪演练2 (2018·新余模拟)已知{an}是各项都为正数的数列,其前n项和为Sn,且Sn为

an与的等差中项.

an(1)求证:数列{Sn}为等差数列; (2)求数列{an}的通项公式;

?-1?

(3)设bn=,求{bn}的前n项和Tn.

n2

1

an12

(1)证明 由题意知2Sn=an+,即2Snan-an=1,(*)

an当n≥2时,有an=Sn-Sn-1,代入(*)式得 2Sn(Sn-Sn-1)-(Sn-Sn-1)=1, 整理得Sn-Sn-1=1(n≥2).

又当n=1时,由(*)式可得a1=S1=1, ∴数列{Sn}是首项为1,公差为1的等差数列. (2)解 由(1)可得Sn=1+n-1=n, ∵数列{an}的各项都为正数, ∴Sn=n,

∴当n≥2时,an=Sn-Sn-1=n-n-1, 又a1=S1=1满足上式, ∴an=n-n-1(n∈N). ?-1?

(3)解 由(2)得bn==n*

2

22

2

2

?-1?

nann-n-1

=(-1)(n+n-1), 当n为奇数时,

nTn=-1+(2+1)-(3+2)+…+(n-1+n-2)-(n+n-1)=-n,

当n为偶数时,

Tn=-1+(2+1)-(3+2)+…-(n-1+n-2)+(n+n-1)=n,

∴数列{bn}的前n项和Tn=(-1)

nn(n∈N*).

热点三 等差数列、等比数列的综合问题

解决等差数列、等比数列的综合问题,要从两个数列的特征入手,理清它们的关系;数列与不等式、函数、方程的交汇问题,可以结合数列的单调性、最值求解. 例3 已知等差数列{an}的公差为-1,且a2+a7+a12=-6. (1)求数列{an}的通项公式an与其前n项和Sn;

(2)将数列{an}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{bn}的前3项,

4

记{bn}的前n项和为Tn,若存在m∈N,使得对任意n∈N,总有Sn

解 (1)由a2+a7+a12=-6,得a7=-2,∴a1=4, ∴an=5-n,从而Sn=

**

n?9-n?

2

(n∈N).

*

(2)由题意知b1=4,b2=2,b3=1, 设等比数列{bn}的公比为q,

b21则q==,

b12

??1?m?4?1-???

??2????1?m?∴Tm==8?1-???,

1??2??1-2?1?m∵??随m的增加而减少, ?2?

∴{Tm}为递增数列,得4≤Tm<8. 又Sn=

n?9-n?

212

=-(n-9n)

2

1??9?281?=-??n-?-?,

2??2?4?故(Sn)max=S4=S5=10,

若存在m∈N,使得对任意n∈N,总有Sn2.即实数λ的取值范围为(2,+∞).

思维升华 (1)等差数列与等比数列交汇的问题,常用“基本量法”求解,但有时灵活地运用性质,可使运算简便.

(2)数列的项或前n项和可以看作关于n的函数,然后利用函数的性质求解数列问题. (3)数列中的恒成立问题可以通过分离参数,通过求数列的值域求解. 跟踪演练3 已知数列{an}的前n项和为Sn,且Sn-1=3(an-1),n∈N. (1)求数列{an}的通项公式;

*

*

*

?3?(2)设数列{bn}满足an+1=???2?围.

an?bn,若bn≤t对于任意正整数n都成立,求实数t的取值范

解 (1)由已知得Sn=3an-2,令n=1,得a1=1, 又an+1=Sn+1-Sn=3an+1-3an, 3

得an+1=an,

2

5

全国通用版高考数学二轮复习专题二数列第1讲等差数列与等比数列学案理

第1讲等差数列与等比数列[考情考向分析]1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.数列求和及数列与函数、不等式的综合问题是高考考查的重点,考查分析问题、解决问题的综合能力.热点一等差数列、等比数列的运算1.通项公式等差数列:an=a1+(n-1)d;等比数列:an=a1·q2.求和公式等
推荐度:
点击下载文档文档为doc格式
5o2ed8n9e383hrt8bf1m52amw9lhr300875
领取福利

微信扫码领取福利

微信扫码分享