黄冈中学
中考数学二次函数知识点
20年中考真题考点知识点记忆口诀
收集整理了1990年-2010年20年 中考数学试题真题与模拟题, 穷尽一切二次函数知识点与考点, 仔细体会下每一知识点与考点之真实意图
理解记忆,记忆中理解
1.定义:一般地,如果y?ax2?bx?c(a,b,c是常数,a?0),那么y叫做x的二次函数. 2.二次函数y?ax2的性质
(1)抛物线y?ax的顶点是坐标原点,对称轴是y轴. (2)函数y?ax的图像与a的符号关系.
①当a?0时?抛物线开口向上?顶点为其最低点;
②当a?0时?抛物线开口向下?顶点为其最高点.
2(3)顶点是坐标原点,对称轴是y轴的抛物线的解析式形式为y?ax(a?0).
223.二次函数 y?ax2?bx?c的图像是对称轴平行于(包括重合)y轴的抛物线.
4.二次函数y?ax?bx?c用配方法可化成:y?a?x?h??k的形式,其中
22b4ac?b2h??,k?.
2a4a5.二次函数由特殊到一般,可分为以下几种形式:①y?ax;②y?ax?k;③y?a?x?h?;④
222y?a?x?h??k;⑤y?ax2?bx?c.
2 1
6.抛物线的三要素:开口方向、对称轴、顶点.
①a的符号决定抛物线的开口方向:当a?0时,开口向上;当a?0时,开口向下;
a相等,抛物线的开口大小、形状相同.
②平行于y轴(或重合)的直线记作x?h.特别地,y轴记作直线x?0.
7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.
b?4ac?b2?28.求抛物线的顶点、对称轴的方法(1)公式法:y?ax?bx?c?a?x?,∴顶点是??2a4a??bb4ac?b2(?,),对称轴是直线x??.
2a2a4a (2)配方法:运用配方的方法,将抛物线的解析式化为y?a?x?h??k的形式,得到顶点为(h,k),
22对称轴是直线x?h.
(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分
线是抛物线的对称轴,对称轴与抛物线的交点是顶点.
用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线y?ax?bx?c中,a,b,c的作用
(1)a决定开口方向及开口大小,这与y?ax中的a完全一样.
(2)b和a共同决定抛物线对称轴的位置.由于抛物线y?ax?bx?c的对称轴是直线
222x??③
bb,故:①b?0时,对称轴为y轴;②?0(即a、b同号)时,对称轴在y轴左侧;
a2ab?0(即a、b异号)时,对称轴在y轴右侧. a2 (3)c的大小决定抛物线y?ax?bx?c与y轴交点的位置.
2 当x?0时,y?c,∴抛物线y?ax?bx?c与y轴有且只有一个交点(0,c):
①c?0,抛物线经过原点; ②c?0,与y轴交于正半轴;③c?0,与y轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y轴右侧,则 10.几种特殊的二次函数的图像特征如下: 函数解析式 开口方向 对称轴 顶点坐标 b?0. a 2
y?ax2 y?ax?k 2y?a?x?h? 2 当a?0时 开口向上 当a?0时 x?0(y轴) x?0(y轴) (0,0) (0, k) (h,0) (h,k) x?h x?h y?a?x?h??k 2y?ax?bx?c 2开口向下 x??b 2ab4ac?b2,(?) 2a4a11.用待定系数法求二次函数的解析式
(1)一般式:y?ax2?bx?c.已知图像上三点或三对x、y的值,通常选择一般式. (2)顶点式:y?a?x?h??k.已知图像的顶点或对称轴,通常选择顶点式.
2 (3)交点式:已知图像与x轴的交点坐标x1、x2,通常选用交点式:y?a?x?x1??x?x2?. 12.直线与抛物线的交点
(1)y轴与抛物线y?ax2?bx?c得交点为(0, c).
2 (2)与y轴平行的直线x?h与抛物线y?ax2?bx?c有且只有一个交点(h,ah?bh?c).
(3)抛物线与x轴的交点
二次函数y?ax?bx?c的图像与x轴的两个交点的横坐标x1、x2,是对应一元二次方程
2ax2?bx?c?0的两个实数根.抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别
式判定:
①有两个交点???0?抛物线与x轴相交;
②有一个交点(顶点在x轴上)???0?抛物线与x轴相切; ③没有交点???0?抛物线与x轴相离. (4)平行于x轴的直线与抛物线的交点
同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵
坐标为k,则横坐标是ax?bx?c?k的两个实数根.
2 (5)一次函数y?kx?n?k?0?的图像l与二次函数y?ax?bx?c?a?0?的图像G的交点,由方
2程组
y?kx?ny?ax2?bx?c的解的数目来确定:①方程组有两组不同的解时?l与G有两个交点; ②
3
方程组只有一组解时?l与G只有一个交点;③方程组无解时?l与G没有交点.
(6)抛物线与x轴两交点之间的距离:若抛物线y?ax2?bx?c与x轴两交点为A?x1,0?,B?x2,0?,
由于x1、x2是方程ax?bx?c?0的两个根,故
2bcx1?x2??,x1?x2?aaAB?x1?x2?
?x1?x2?2??x1?x2?2b2?4ac??b?4c?4x1x2???????
aaa?a?2一次函数与反比例函数
考点一、平面直角坐标系 (3分) 1、平面直角坐标系
在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点,不属于任何象限。 2、点的坐标的概念
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当a?b时,(a,b)和(b,a)是两个不同点的坐标。 考点二、不同位置的点的坐标的特征 (3分) 1、各象限内点的坐标的特征 点P(x,y)在第一象限?x?0,y?0
点P(x,y)在第二象限?x?0,y?0 点P(x,y)在第三象限?x?0,y?0 点P(x,y)在第四象限?x?0,y?0 2、坐标轴上的点的特征
点P(x,y)在x轴上?y?0,x为任意实数 点P(x,y)在y轴上?x?0,y为任意实数
点P(x,y)既在x轴上,又在y轴上?x,y同时为零,即点P坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上?x与y相等 点P(x,y)在第二、四象限夹角平分线上?x与y互为相反数
4
4、和坐标轴平行的直线上点的坐标的特征 位于平行于x轴的直线上的各点的纵坐标相同。 位于平行于y轴的直线上的各点的横坐标相同。 5、关于x轴、y轴或远点对称的点的坐标的特征
点P与点p’关于x轴对称?横坐标相等,纵坐标互为相反数 点P与点p’关于y轴对称?纵坐标相等,横坐标互为相反数 点P与点p’关于原点对称?横、纵坐标均互为相反数 6、点到坐标轴及原点的距离
点P(x,y)到坐标轴及原点的距离: (1)点P(x,y)到x轴的距离等于y (2)点P(x,y)到y轴的距离等于x
22(3)点P(x,y)到原点的距离等于x?y
考点三、函数及其相关概念 (3~8分) 1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。 3、函数的三种表示法及其优缺点 (1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图像法
用图像表示函数关系的方法叫做图像法。 4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 考点四、正比例函数和一次函数 (3~10分) 1、正比例函数和一次函数的概念
一般地,如果y?kx?b(k,b是常数,k?0),那么y叫做x的一次函数。
特别地,当一次函数y?kx?b中的b为0时,y?kx(k为常数,k?0)。这时,y叫做x的正比例函数。
2、一次函数的图像
所有一次函数的图像都是一条直线
5