.
习题四
4-1 符合什么规律的运动才是谐振动?分别分析以下运动是不是谐振动: (1)拍皮球时球的运动;
(2)如题4-1图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很短).
题4-1图
解:要使一个系统作谐振动,必须同时满足以下三个条件:一,描述系统的各种参量,如质量、转动惯量、摆长……等等在运动中保持为常量;二,系统是在自己的稳定平衡位置附近作往复运动;三,在运动中系统只受到内部的线性回复力的作用.或者说,假设一个系统的运动微分方程能用
d2?2????0 2dt描述时,其所作的运动就是谐振动. (1)拍皮球时球的运动不是谐振动.第一,球的运动轨道中并不存在一个稳定的平衡位置;第二,球在运动中所受的三个力:重力,地面给予的弹力,击球者给予的拍击力,都不是线性回复力.
(2)小球在题4-1图所示的情况中所作的小弧度的运动,是谐振动.显然,小球在运动过程中,各种参量均为常量;该系统(指小球凹槽、地球系统)的稳定平衡位置即凹槽最低点,即系统势能最小值位置点O;而小球在运动中的回复力为?mgsin?,如题4-1图(b)所示.题
?S→0,所以回复力为?mg?.式中负号,表示回复力的方向R始终与角位移的方向相反.即小球在O点附近的往复运动中所受回复力为线性的.假设以小球为对象,那么小球在以O?为圆心的竖直平面内作圆周运动,由牛顿第二定律,在凹槽切线
中所述,?S<<R,故??方向上有
d2?mR2??mg?
dt令??2g,那么有 Rd2?2???0 2dt4-2劲度系数为k1和k2的两根弹簧,与质量为m的小球按题4-2图所示的两种方式连接,试证明它们的振动均为谐振动,并分别求出它们的振动周期.
题4-2图
word版
.
解:(1)图(a)中为串联弹簧,对于轻弹簧在任一时刻应有F?F1?F2,设串联弹簧的等效倔强系数为K串等效位移为x,那么有
F??k串xF1??k1x1
F2??k2x2
又有 x?x1?x2
x?所以串联弹簧的等效倔强系数为
FFF?1?2 k串k1k2k串?k1k2
k1?k2即小球与串联弹簧构成了一个等效倔强系数为k?k1k2/(k1?k2)的弹簧振子系统,故小球作谐振动.其振动周期为
T?2???2?m(k1?k2)m ?2?k串k1k2(2)图(b)中可等效为并联弹簧,同上理,应有F?F1?F2,即x?x1?x2,设并联弹簧的倔强系数为k并,那么有
k并x?k1x1?k2x2
故 k并?k1?k2 同上理,其振动周期为
T??2?m
k1?k24-3如题4-3图所示,物体的质量为m,放在光滑斜面上,斜面与水平面的夹角为?,弹簧的倔强系数为k,滑轮的转动惯量为I,半径为R.先把物体托住,使弹簧维持原长,然后由静止释放,试证明物体作简谐振动,并求振动周期.
word版
.
题4-3图
解:分别以物体m和滑轮为对象,其受力如题4-3图(b)所示,以重物在斜面上静平衡时位置为坐标原点,沿斜面向下为x轴正向,那么当重物偏离原点的坐标为x时,有
d2xmgsin??T1?m2①
dtT1R?T2R?I?②
d2x?R?T2?k(x0?x)③ dt2式中x0?mgsin?/k,为静平衡时弹簧之伸长量,联立以上三式,有
Id2x(mR?)2??kxR
RdtkR2令 ?? 2mR?I2那么有
d2x??2x?0 2dt故知该系统是作简谐振动,其振动周期为
mR2?Im?I/R2T??2?(?2?) 2?KkR2?4-4 质量为10?10kg的小球与轻弹簧组成的系统,按x谐振动,求:
(1)振动的周期、振幅和初位相及速度与加速度的最大值;
(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)t2?5s与t1?1s两个时刻的位相差;
?3?0.1cos(8??2?)3(SI)的规律作
word版