②圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)
③横截面的问题
④浸水体积问题:(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体
⑤等体积转换问题:一个圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的 问题,注意不要乘以1/3
第四单元 比例
1、比的意义(1)两个数相除又叫做两个数的比
(2)“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。 (4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。 (5)比的后项不能是零。
(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
3、求比值和化简比:
求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。
4、按比例分配:
在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。 5、比例的意义:表示两个比相等的式子叫做比例。 组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。这叫做比例的基本性质。
7、比和比例的区别
(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。
(2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。
8、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示x/y=k(一定)
9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
用字母表示x×y=k(一定)
10、判断两种量成正比例还是成反比例的方法:
关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。
11、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
12、比例尺的分类
(1)数值比例尺和线段比例尺 (2)缩小比例尺和放大比例尺
13、图上距离:
图上距离/实际距离=比例尺 实际距离×比例尺=图上距离 图上距离÷比例尺=实际距离
14、应用比例尺画图的步骤: (1)写出图的名称、 (2)确定比例尺;
(3)根据比例尺求出图上距离; (4)画图(画出单位长度) (5)标出实际距离,写清地点名称 (6)标出比例尺
15、图形的放大与缩小:形状相同,大小不同。
16、用比例解决问题:
根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解。
17、常见的数量关系式:(成正比例或成反比例) 单价×数量=总价 单产量×数量=总产量 速度×时间=路程 工效×工作时间=工作总量 18、 已知图上距离和实际距离可以求比例尺。 已知比例尺和图上距离可以求实际距离。 已知比例尺和实际距离可以求图上距离。 计算时图距和实距单位必须统一。 19、播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例? 答:每天播种的公顷数×天数=播种的总公顷数 已知播种的总公顷数一定,就是每天播种的公顷数和要用的天数的积是一定的,所以每天播种的公顷数和要用的天数成反比例。 第五单元 数学广角-鸽巢问题 1、鸽巣原理是一个重要而又基本的组合原理, 在解决数学问题时有非常重要的作用 ①什么是鸽巣原理, 先从一个简单的例子入手, 把3个苹果放在2个盒子里, 共有四种不同的放法,如下表 放法 1 2 3 4 盒子1 3 2 1 0 盒子2 0 1 2 3 无论哪一种放法, 都可以说“必有一个盒子放了两个或两个以上的苹果”。 这个结论是在“任意放法”的情况下, 得出的一个“必然结果”。 类似的, 如果有5只鸽子飞进四个鸽笼里, 那么一定有一个鸽笼飞进了2只或2只以上的鸽子 如果有6封信, 任意投入5个信箱里, 那么一定有一个信箱至少有2封信 我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣, 可以得到鸽巣原理最简单的表达形式
②利用公式进行解题:
物体个数÷鸽巣个数=商……余数 至少个数=商+1
2、摸2个同色球计算方法。
①要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1。 物体数=颜色数×(至少数-1)+1
②极端思想: 用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。 ③公式:
两种颜色:2+1=3(个) 三种颜色:3+1=4(个) 四种颜色:4+1=5(个)