【易错题】高中必修五数学上期中第一次模拟试卷及答案(2)
一、选择题
1.已知首项为正数的等差数列?an?的前n项和为Sn,若a1008和a1009是方程
x2?2017x?2024?0的两根,则使Sn?0成立的正整数n的最大值是( )
A.1008
B.1009
C.2016
D.2017
2.定义在???,0???0,???上的函数f?x?,如果对于任意给定的等比数列?an?,若
?f?a??仍是比数列,则称f?x?为“保等比数列函数”.现有定义在???,0???0,???n上的如下函数: ①f?x??x;
3②f?x??e;
x③f?x??x;
④f?x??lnx
则其中是“保等比数列函数”的f?x?的序号为( ) A.①②
B.③④
C.①③
D.②④
3.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为( ) A.一尺五寸
B.二尺五寸
C.三尺五寸
D.四尺五寸
?5x?2y?18?0?4.已知实数x,y满足?2x?y?0,若直线kx?y?1?0经过该可行域,则实数k
?x?y?3?0?的最大值是( ) A.1
B.
3 2C.2 D.3
5.已知等差数列?an?的前n项为Sn,且a1?a5??14,S9??27,则使得Sn取最小值时的n为( ). A.1
B.6
C.7
D.6或7
6.若VABC的对边分别为a,b,c,且a?1,?B?45o,SVABC?2,则b?( ) A.5
B.25
C.41 D.52 7.设?an?是公差不为0的等差数列,a1?2且a1,a3,a6成等比数列,则?an?的前n项和
Sn=( )
n27nA. ?44n25nB.?
33n23nC.?
24D.n2?n
1,q?2,则a4与a8的等比中项是( ) 811A.±4 B.4 C.? D.
4414yx?x?y?19.已知正数、满足,则的最小值为( )
x1?y8.等比数列?an?中,a1?A.2
B.
9 2nC.
14 3D.5
10.数列?an?中,an?1???1?an?2n?1,则数列?an?的前8项和等于( ) A.32
B.36
C.38
D.40
11.已知正项数列{an}中,a1?a2?L?an?项公式为( ) A.an?n
B.an?n
2n(n?1)(n?N*),则数列{an}的通2n2D.an?
2nC.an?
2x?112.已知a>0,x,y满足约束条件{x?y?3,若z=2x+y的最小值为1,则a=
y?a(x?3)A.
B.
C.1
D.2
二、填空题
13.在?ABC中,内角A,B,C所对的边分别为a,b,c,a?2,且
?2?b??sinA?sinB???c?b?sinC,则?ABC面积的最大值为______.
14.已知二次函数f(x)?4x2?2(p?2)x?2p2?p?1,若在区间[?1,1]内至少存在一个实数x使
f(x)?0,则实数p的取值范围是__________.
15.在?ABC中,角A、B、C所对的边分别为a、b、c,cosC5,且?232acosB?bcosA?2,则?ABC面积的最大值为 .
16.已知数列是各项均不为不等式
的等差数列,为其前项和,且满足an?S2n?1n?Nn?1???.若
???1?an?1n?n?8???1?n对任意的n?N?恒成立,则实数的取值范围是 .
17.不等式2x?1?x?1的解集是 .
18.某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A类产品50件,B类产品
140件,所需租赁费最少为__________元. 19.若已知数列的前四项是
1111、、、,则数列前n项和为______. 22221?22?43?64?8?y?x?20.设变量x,y满足约束条件:?x?y?2,则z?x?3y的最小值为__________.
?x??1?三、解答题
21.在VABC中,?B?从①sinA??3,b?7,________________,求BC边上的高.
21, ②sinA?3sinC, ③a?c?2这三个条件中任选一个,补充在上面7问题中并作答.
22.如图,游客从某旅游景区的景点A处下上至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C,假设缆车匀速直线运动的速度为
130m/min,山路AC长为1260m,经测量cosA?123,cosC?.
513
(1)求索道AB的长;
(2)问:乙出发多少min后,乙在缆车上与甲的距离最短?
(3)为使两位游客在C处互相等待的时间不超过3min,乙步行的速度应控制在什么范围内?
23.已知?an?是递增的等差数列,a2,a4是方程(1)求?an?的通项公式;
的根.
?an?(2)求数列?n?的前n项和.
?2?24.在?ABC中,角A、B、C的对边分别是a、b、c,如果A、B、C成等差数列且b?3.
(1)当A??4时,求?ABC的面积S;
(2)若?ABC的面积为S,求S的最大值.
25.已知在VABC中,角A,B,C的对边分别为a,b,c,且
asinB?bcosA?0. (1)求角A的大小:
(2)若a?25,b?2.求VABC的面积.
26.已知在等比数列{an}中,a2=2,,a4a5=128,数列{bn}满足b1=1,b2=2,且{bn?1an}为等差数列. 2(1)求数列{an}和{bn}的通项公式; (2)求数列{bn}的前n项和
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.C 解析:C 【解析】
依题意知a1008?a1009?2017?0,a1008a1009??2024?0,Q数列的首项为正数,
?a1008?0,a10090,?S2016?S2017?a1?a2016??2016??a1008?a1009??20162210090,
a1?a2017??2017???a2?2017?0,?使Sn?0成立的正整数n的最大值是
2016,故选C.
2.C
解析:C 【解析】 【分析】
设等比数列?an?的公比为q,验证【详解】
设等比数列?an?的公比为q,则
f?an?1?是否为非零常数,由此可得出正确选项. f?an?an?1?q. an33f?an?1?an?a?3?1?2??n?1??q3,该函数为“保等比数列函对于①中的函数f?x??x,
f?an?an?an?数”;
an?1fa??en?1x?an?ean?1?an不是非零常数,该函数不是“保等对于②中的函数f?x??e,
f?an?e比数列函数”; 对于③中的函数f?x??列函数”;
对于④中的函数f?x??lnx,数”.故选:C. 【点睛】
本题考查等比数列的定义,着重考查对题中定义的理解,考查分析问题和解决问题的能力,属于中等题.
f?an?1??x,f?an?an?1an?an?1?anq,该函数为“保等比数
f?an?1?lnan?1?不是常数,该函数不是“保等比数列函
f?an?lnan3.B
解析:B 【解析】 【分析】
从冬至日起各节气日影长设为?an?,可得?an?为等差数列,根据已知结合前n项和公式和等差中项关系,求出通项公式,即可求解. 【详解】
由题知各节气日影长依次成等差数列,设为?an?,
Sn是其前n项和,则S9?9?a1?a9?2?9a5?85.5尺,
所以a5?9.5尺,由题知a1?a4?a7?3a4?31.5, 所以a4?10.5,所以公差d?a5?a4??1, 所以a12?a5?7d?2.5尺。 故选:B. 【点睛】
本题考查等差数列应用问题,考查等差数列的前n项和与通项公式的基本量运算,属于中档题.
4.B
解析:B 【解析】 【分析】
先根据约束条件画出可行域,再利用直线kx?y?2?0过定点?0,1?,再利用k的几何意义,只需求出直线kx?y?1?0过点B?2,4?时,k值即可.