2018年广东省中考数学试卷
参考答案与试题解析
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.(3分)四个实数0、、﹣3.14、2中,最小的数是( ) A.0
B. C.﹣3.14 D.2
【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可. 【解答】解:根据实数比较大小的方法,可得 ﹣3.14<0<<2, 所以最小的数是﹣3.14. 故选:C.
【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.
2.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为( ) A.1.442×107 B.0.1442×107 C.1.442×108 D.0.1442×108
【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.
【解答】解:14420000=1.442×107, 故选:A.
【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确科学记数法的表示方法.
3.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是( )
A. B. C. D.
【分析】根据主视图是从物体正面看所得到的图形解答即可.
【解答】解:根据主视图的定义可知,此几何体的主视图是B中的图形, 故选:B.
【点评】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.
4.(3分)数据1、5、7、4、8的中位数是( ) A.4
B.5
C.6
D.7
【分析】根据中位数的定义判断即可;
【解答】解:将数据重新排列为1、4、5、7、8, 则这组数据的中位数为5 故选:B.
【点评】本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
5.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是( ) A.圆 B.菱形
C.平行四边形 D.等腰三角形
【分析】根据轴对称图形与中心对称图形的概念求解.
【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误; B、是轴对称图形,也是中心对称图形,故此选项错误; C、不是轴对称图形,是中心对称图形,故此选项错误; D、是轴对称图形,不是中心对称图形,故此选项正确. 故选:D.
【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
6.(3分)不等式3x﹣1≥x+3的解集是( ) A.x≤4
B.x≥4 C.x≤2 D.x≥2
【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得. 【解答】解:移项,得:3x﹣x≥3+1, 合并同类项,得:2x≥4, 系数化为1,得:x≥2, 故选:D.
【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.
7.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为( )
A. B. C. D.
【分析】由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,进而可得出DE∥BC及△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.
【解答】解:∵点D、E分别为边AB、AC的中点, ∴DE为△ABC的中位线, ∴DE∥BC, ∴△ADE∽△ABC, ∴
=(
)2=.
故选:C.
【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用三角形的中位线定理找出DE∥BC是解题的关键.
8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是( )
A.30° B.40° C.50° D.60°
【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠B=∠D=40°.
【解答】解:∵∠DEC=100°,∠C=40°, ∴∠D=40°, 又∵AB∥CD, ∴∠B=∠D=40°, 故选:B.
【点评】本题考查了平行线性质的应用,运用两直线平行,内错角相等是解题的关键.
9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是( )
A.m< B.m≤ C.m> D.m≥
【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.
【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根, ∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,
∴m<. 故选:A.
【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.
10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为( )
A. B. C.
D.
【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.
【解答】解:分三种情况: ①当P在AB边上时,如图1, 设菱形的高为h, y=AP?h,
∵AP随x的增大而增大,h不变, ∴y随x的增大而增大, 故选项C不正确;