第2章系统的数学模型 (习题答案)
2.1什么是系统的数学模型?常用的数学模型有哪些?
解:数学模型就是根据系统运动过程的物理、化学等规律,所写出的描述系统运动规律、特性、输出与输入关系的数学表达式。常用的数学模型有微分方程、传递函数、状态空间模型等。
2.2 什么是线性系统?其最重要的特性是什么?
解:凡是能用线性微分方程描述的系统就是线性系统。线性系统的一个最重要的特性就是它满足叠加原理。
2.3 图( 题2.3) 中三图分别表示了三个机械系统。求出它们各自的微分方程, 图中xi表示输入位移, xo表示输出位移, 假设输出端无负载效应。
题图2.3
解:①图(a):由牛顿第二运动定律,在不计重力时,可得
整理得
将上式进行拉氏变换,并注意到运动由静止开始,即初始条件全部为零,可得
[
于是传递函数为
]
②图(b):其上半部弹簧与阻尼器之间,取辅助点A,并设A点位移为x,方向朝下;而在其下半部工。引出点处取为辅助点B。则由弹簧力与阻尼力平衡的原则,从A和B两点可以分别列出如下原始方程:
消去中间变量x,可得系统微分方程
对上式取拉氏变换,并记其初始条件为零,得系统传递函数为
③图(c):以的引出点作为辅助点,根据力的平衡原则,可列出如下原始方程:
移项整理得系统微分方程
对上式进行拉氏变换,并注意到运动由静止开始,即
则系统传递函数为
2.4试建立下图(题图2.4)所示各系统的微分方程并说明这些微分方程之间有什么特点,其中电压ur(t)和位移xr(t)为输入量;电压uc(t)和位移xc(t)为输出量;k,k1和k2为弹簧弹性系数;f为阻尼系数。
C??fkur(t)?Ruc(t)?xr(t)xc(t)(a)(b)f?ur(t)R1R2C?uc(t)k1xr(t)xc(t)k2??(d)(c)
题图2.4
【解】:(a)
方法一:设回路电流为i,根据克希霍夫定律,可写出下列方程组:
?1u?idt?uc?r? C??u?Ri?c消去中间变量,整理得:
RC方法二:
ducdur?uc?RC dtdtUc(s)?Ur(s)
RR?1?RCsRCs?1?RCducdur?uc?RC dtdtCs
控制工程基础第2章答案
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)