好文档 - 专业文书写作范文服务资料分享网站

反应堆结构

天下 分享 时间: 加入收藏 我要投稿 点赞

反应堆结构及几种典型反应堆系统

反应堆是核电站中的热源,其内部装有可以进行可控链式核反应的核燃料,源源不断地释放出能量。核反应产生的热能通过载热剂传给汽轮机作功,汽轮机带动发电机,产生的电能被输送到电网。

反应堆由堆芯、压力容器、上部堆内构件和下部堆内构件等几部分组成。反应堆安置在反应堆厂房(也称为安全壳)的正中,它的六条进出口接管管嘴支撑在作为一次屏蔽的混凝土坑(即堆坑)内,而堆坑位于一个大约10米深的反应堆换料水池的底部。如下图

它可分为反应堆堆芯、堆内构件、反应堆压力容器和顶盖控制棒驱动机构四部分。下面主要介绍反应堆堆心和压力容器。

1、反应堆堆芯:

核反应堆的堆芯位于压力容器中心,由157个几何形状及机械结构完全相同的燃料组件构成,核反应区高3.65m,等效直径3.04m 。燃料核裂变释放出来的核能立即转变成热能,并由冷却剂导出。

1.1、燃料组件:

燃料组件骨架由8个定位格架、24根控制棒导向管、一根中子通量测量管和上、下管座焊接而成。其功用是确保组件的刚性,承受整个组件的重量和控制棒快速下插的冲击力,并准确引导控制棒束的升降,保证组件在堆内可靠工作和装卸料时的运输安全。如下图

定位格架由锆-4合金条带制成,这些条带装配成17×17的正方形栅格。在格架栅元中,燃料棒由其中两边的弹簧夹顶在另两边的两个刚性凸台上,其共同作用使燃料棒保持中心位置。弹簧夹由因科镍718薄片弯成开口环制成,然后将夹子跨在条带上夹紧定位,并在上下相接面上点焊。这样形成的两个相背的弹簧分别顶住相邻栅元的两根燃料棒,自然抵消了作用在条带上的力。

每个燃料组件带有24个控制棒导向管,由锆-4合金制成,它们为控制棒的插入和提出导向。其下部在第一和第二格架之间直径缩小,形成缓冲段,以便当控制棒紧急下落接近底部时起缓冲作用。在缓冲段上部有流水孔,正常运行时冷却水流入管内,在控制棒下插时水能部分从管内排出。缓冲段下部的管径扩至正常,使底层格架可以按上层格架的相同方式与导向管相连接。

位于组件中心位置的通量测量管为运行中测量堆芯内中子通量的测量元件提供通道,由锆-4合金制成。它与格架固定的方法类似于控制棒导向管。

下管座是燃料组件的底座,由AISI304不锈钢制成。它包括四个支撑脚和一块正方形多孔板,后者尺寸为21.4cm×21.4cm,下侧装了滤网,防止杂物进入堆芯损坏燃料组件。导向管与下管座用螺钉连接并焊接,组件重量和施加在组件上的轴向载荷经导向管传递到下管座上。下管座两个对角支撑脚上有销孔,它们与堆芯下栅格板上的两个定位销相配合,保证了燃料组件在堆芯的定位,作用在燃料组件上的水平载荷同样通过定位销传到堆芯支撑结构上。

上管座是燃料组件上部构件,冷却剂通过它由燃料组件流向堆芯上栅板的流

水孔。

1.2、燃料棒:

燃料棒是压水堆产生核裂变并释放热量的基本元件。271块二氧化铀燃料芯块叠置在锆-4合金包壳管中,两端装上端塞,把燃料芯块封焊在里面,从而构成长3851.5 mm,外径9.5 mm的燃料棒。如下图

1.3、控制棒组件:

控制棒组件(RCCA)是反应堆控制部件,由吸收中子能力很强的材料制成,可以控制核裂变的速率。在正常工况下它们用于启动反应堆、调节堆功率和停堆。在事故工况下,控制棒依靠自身重力快速下插,使反应堆在极短时间内紧急停堆,以保证安全。

每个控制棒组件有24根中子,它们顶端固定在一个星形架上。星形架包括一个连接柄和若干带有圆筒形指杆的翼片,吸收棒就悬置在指杆上。在连接柄的上端,有与控制棒驱动机构的驱动杆相连的槽口和供吊运用的凹槽。在连接柄内的底部装有一个弹簧,以便在控制棒紧急下落到终端时吸收冲击能量,起缓冲作用。星形架由304不锈钢制成,而弹簧材料是因科镍-718。

控制棒组件分两类。一类由24根吸收剂棒组成,吸收能力强,称为黑棒组件;另一类由8根吸收剂棒和16根不锈钢棒组成,吸收能力弱,称为灰棒组件。控制棒结果如下页图

2、压力容器:

反应堆压力容器是用来固定和包容堆芯、堆内构件,使核燃料的链式裂变反应限制在一个密封的金属壳内进行。如果说燃料元件包壳是防止放射物质外逸的第一道屏障,则包容整个堆芯的压力容器就是第二道屏障。反应堆压力容器又称为压力壳,是由两个组件即容器本体以及用双头螺栓联接的反应堆容器顶盖组成。反应堆容器是由低合金锻钢单个环形锻件焊接而成。这些无纵焊缝的单个锻制部件,逐一用全焊透的环焊缝连成一体。堆容器包容堆内构件、堆芯以及作为冷却剂、慢化剂和反射层的水,凡是与回路冷却剂接触的容器内表面,都堆焊不锈钢覆面层,其厚度不小于5mm。堆容器本体从上而下由一只上法兰、一个密封台肩、一节接管段、二节堆芯包容环段、一节过渡段、一只半球形下封头组成。下图为反应堆压力容器本体结构。

当前压水堆压力容器普遍选用的是低合金钢;主要是锰—钼系列,这种钢具有良好的导热性(是不锈钢的三倍),因而在温度变化时热应力较小;很好的可焊性;具有良好的抗辐照脆化能力,便于加工,成本较低。目前,美国广泛采用SA508-Ⅲ合金钢作锻件,SA533B-1合金钢作板材。这些钢是美国反应堆容器所用的主要材料,法国的钢种与美国用的SA508-Ⅲ级相似。大亚湾核电厂反应堆容器材料成分为:碳<0.25%,添加少量的合金元素为锰1.15~1.5%,钼:0.6%,镍:0.4-1.0%。

2.1、上法兰:

在法兰上,为装58只锁紧螺栓钻有58个未穿透的螺纹孔;与反应堆容器顶盖匹配的不锈钢支承面。反应堆容器的密封由两个特殊设计的、连在顶盖法兰上的O形密封环来保证。

2.2、密封台肩:

将锻压的环形密封台肩与反应堆容器上法兰焊接,密封台肩直接与密封环焊接,以防止反应堆容器与反应堆堆腔基板之间的泄漏。

2.3、接管段:

六只接管径向地插入接管段,并用全焊透焊缝加以焊接。每一条传热环路的

进、出口接管相隔成50°夹角,而每一对接管沿反应堆容器圆周成120°对称分布;出口接管的内侧有一节围筒,使出口接管与堆芯吊篮开口之间形成连续过渡。每个接管的外端焊一段不锈钢安全端。这样,采用同种材料就允许在现场把一回路管道与堆容器接管焊接相连。为了把反应堆容器安放在支承结构上,六只接管底部有支撑座,它们放在整体支承环的支承导向板上。

2.4、堆芯包容环段:

在反应堆容器接管段下面,堆芯高度的圆筒形部分是由两段对接焊接的筒体构成,因科镍制的导向键焊在堆芯包容环段的下部,用来给堆内构件导向并限制位移。

2.5、过渡段:

过渡段把半球形的下封头和容器和筒体段联接起来。

2.6、下封头:

由热轧钢板锻压成半球形封头。下封头上装有50根因科镍导向套管,为堆内中子通量测量系统提供导向。利用部分穿透焊工艺将导向套管焊在下封头内。

下表为反应堆压力容器的主要设计参数

以上是对反应堆结构的分析。下面介绍目前几种典型的反应堆系统

3、反应堆系统:

3.1、沸水堆:

沸水堆壳体内装有堆芯、堆内支承结构、汽水分离器、蒸汽干燥器和喷射泵等。堆芯主要由核燃料组件、控制棒等组成,也采用低富集度(2%一3%铀—235)的UO2作为核燃料,将UO2制成圆柱状芯块后再装入锆合金包壳内构成外径为12.5mm,长度约3.7m的元件棒。

元件棒通常排列成8×8的正方形栅阵,中间用几层弹簧格架夹紧定位,然后装入锆合金的方盒内构成燃料组件。每四个燃料元件盒组成一个单元。堆芯就由许多这样单元组合而成。

沸水堆压力容器内直接产生蒸汽,所以承受的压力只有压水堆的1/2(约7MPa),因此压力容器的厚度可以减小。沸水堆的功率密度比压水堆的低,且沸水堆压力容器内还放置汽水分离器、干燥器和喷射泵等设备,致使压力容器尺寸增大。就压力容器的制造成本来说,这两个影响基本上相互抵消。沸水堆的比功率较小,同样功率条件下核燃料装量较压水堆约大50%。因此虽然系统比较简单,但总投资较压水堆略大。由于沸水堆采用直接循环,水通过堰芯时将放射性物质直接带到汽轮机、冷凝器等设备,使这些设备污染而必须屏蔽。这给设计、运行、维修都带来不便。

3.2、重水堆:

重水堆用重水作慢化剂,按其结构形式可分为压力容器式及压力管式两种。压力容器式的冷却剂只限于重水,压力管式的冷却剂不受限制,可以是重水,轻水或有机化台物。按堆芯结构和冷却剂不同,目前主要有压力壳式重水堆、压力管卧式重水堆和压力管式沸腾轻水冷却重水堆三种。目前达到商用的只有加拿大发展的压力管卧式重水准,称为CANDU(Canada Deuterium Uranium)型重水堆。

CANDU型重水堆用压力管把重水冷却剂和重水慢化剂分开。压力管内流过不沸腾的高温高压(温度约300度,压力约10MPa)重水作为冷却剂,压力管外是基本不受压的慢化剂,慢化剂盛装在大型卧式圆柱型排管容器中。下图为重水堆反应系统结构图

3.3、高温气冷堆:

高温气冷堆的核燃料是富集度约为10%的UO2或高富集铀加钍的氧化物(或碳化物),制成直径约为0.6mm的颗粒,外面再涂敷三层到四层热解碳和碳化硅涂层。高温气冷堆的冷却剂出口温度高,因此电站的热效率高达40%,可与新型火电站相媲美。堆内没有金属结构材料,中子寄生俘获少,卸料比燃耗达1000MWd/t,每年所需补充的核燃料少;如果能把出口温度提高到1000℃以上,则还有可能把反应堆产生的热量直接用于炼钢、化工及煤的气化等工业,达到综合利用的目的。所以这种堆是很有发展前途的先进转换堆型。高温气冷堆的技术比较复杂,目前尚处于试验研究阶段。

3.4、快中子增值堆:

快中于反应堆内核燃料裂变主要由能量约100 keV以上的快中子引起,所以堆内不需要慢化剂,从而使堆芯内有害吸收减少,能有更多的中子用于转换新的核燃料,使转换比增大。

快中子堆的燃料元件加工及乏燃料后处理要求高。且其快中子辐照注量率也比热中于堆大几十倍,因此对材料的要求也较苛刻。快中子堆内的中子平均寿命比热

中子堆的短,而且钚—239的缓发中子份额只有铀—235的1/3,所以快中子堆的控制比较困难。到目前为止,快中子反应堆还未能获得大量发展。

3.5、新型反应堆:

聚变反应堆:是指主要靠轻原子(氘、氚、氦等)合成,释放大量结合能并加以利用的反应堆。目前,瞬时的、断续的聚变反应已经实现。

聚变-裂变堆:是聚变反应堆和裂变反应堆组合的装置,在聚变反应堆达不到能量自给时,这种装置具有重要的实用价值。其结构原理为,在装置中心设置聚变堆,外围是裂变堆,聚变产生的中子逸出到裂变堆即可参与裂变反应、释放裂变能量,作为聚变能的补充。

参考文献:

闫淑敏.第一代到第四代反应堆 张炎.世界先进核反应堆

王世亨.第四代核电站与中国核电的未来 柏弧紫.中国核聚变研究巨大突破

中广核.目前国际主流核反应堆系统介绍

反应堆结构

反应堆结构及几种典型反应堆系统反应堆是核电站中的热源,其内部装有可以进行可控链式核反应的核燃料,源源不断地释放出能量。核反应产生的热能通过载热剂传给汽轮机作功,汽轮机带动发电机,产生的电能被输送到电网。
推荐度:
点击下载文档文档为doc格式
5lkto02vd81symv1jbvb
领取福利

微信扫码领取福利

微信扫码分享