好文档 - 专业文书写作范文服务资料分享网站

Fluent多相流模型选择与设定

天下 分享 时间: 加入收藏 我要投稿 点赞

利用Define/Models/Discrete Phase Model打开DPM,本文截取了Discrete Phase Model设置面板的一部分,对其中参数的设定进行详细的分析,如图1所示。

图1 Discrete Phase Model面板

当模拟两相耦合过程时,用户应该首先计算得到收敛或部分收敛的连续相流场,然后再创建喷射源进行耦合计算。在每一轮离散相的计算,FLUENT 计算颗粒/液滴轨迹并且更新每一个流体计算单元内的相间动量、热量以及质量交换项。然后,这些交换项就会作用到随后的连续相的计算。耦合计算时FLUENT 在连续相迭代计算的过程中,按照一定的迭代步数间隔来计算离散相迭代。直到连续相的流场计算结果不再随着迭代步数加大而发生变化(即,达到了所有的收敛标准),耦合计算才会停止。当达到收敛时,离散相的轨迹也不再发生变化(若离散相轨迹发生变化将会导致连续相流场的变化)。 耦合计算的设定步骤如下: 1. 计算连续相流场;

2. 在Discrete Phase Model panel 面板中,激活Interaction with Continuous Phase 选项;

3. 在Number Of Continuous Phase Iterations Per DPM Iteration 文本框中设定颗粒轨迹的计算频率(即连续相迭代多少步,就进行一轮离散相的计算)。若用户设定此参数为5,即意味着在连续相进行了五步迭代之后,就开始离散相的迭代计算。两个离散相计算中间应该间隔多少连续相的迭代步,要视用户问题的物理意义而定。

需要注意的是,【***若此参数设定为0,那么FLUENT 将不进行离散相的计算。】

另外,图1中绿色圈的2个参数是最大计算步数(Max. Number Of Steps)和积分尺度(Length Scale)。

最大计算步数(Max. Number Of Steps)是用积分方程(1),(2) 求解颗粒轨道时,允许的最大时间步数。

6

当某个颗粒轨道计算达到此时间步数时,FLUENT 就自动中止了此颗粒的轨道计算,输出时,此颗粒被标记为“incomplete”。对最大时间步数的规定消除了对某些在流场中不停循环的颗粒的无休止的计算。但是,对于缺省的500 步的最大时间步数,很多问题的计算都不止这么多。这种情况下,当颗粒信息在输出时被标记未完成,而实际颗粒并不是在流场中无休止的打转,那么,用户可以增加最大时间步数[注]值得注意的是:设定上述各个参数的一个简便方法是,若用户希望颗粒穿越长度为D的计算域,那么用长度标尺乘以最大积分时间步数,其结果应该大致等于D,即等于所设定的Number Of Continuous Phase Iterations Per DPM Iteration的值。

2 创建injection

通过Define/injection/create进入创建injection面板,如下图所示:

在Injection Type中选择射流源类型,本文选定空气雾化喷嘴

(air-blast-atomizer)。在Particle Type中选择颗粒类型,本文选择Droplet液滴是一种存在于连续相气流中的液体颗粒。它服从力的平衡并受到加热/冷却的影响(由定律1 确定)。此外,他还由定律2 和3 确定自身的蒸发与沸腾(请参阅User’s Guide中的19.3.4)。只有传热选项被激活并且至少两种化学组份在计算中是被激

7

活的,或者已经选择了非预混燃烧或部分预混燃烧模型,液滴类型才是可选的。当选择了液滴类型之后,用户应该使用理想气体定律来定义气相密度

在空气辅助雾化模型里,用户应直接设定液膜厚度,如图3所示。在Point Properties面板上,设定喷口处液膜的内外半径,即液膜的厚度。另外,用户还必须设定液膜与空气间的最大相对速度差和喷射角度,如图4所示。液膜离开喷口之后,它的初始轨道沿着设定的喷射角。注意:如果初始液膜的轨道指向中心线,

那么,喷射角度为负值。

3 离散相边界条件的设定

在Discrete Phase Model Conditions 属性框下的Boundary Cond. Type 下拉框中选择reflect,trap,或escape 边界条件(在面板中,需要点击DPM 才能激活Discrete Phase Model conditions)。如图5所示。

8

FLUENT 中的离散相缺省边界条件为:

1.壁面(wall)、对称面(symmetry)、轴对称的轴线(axis)均为``reflect''边界条件,且恢复系数均为1.0;

2.所有的流动类型边界(压力入口-pressure inlets、速度入口-velocity inlets、压力出口-pressure outlets 等),均为``escape''边界条件;

3.所有的内部区域边界(辐射体- radiator、多孔介质间断面- porous jump)均为边界条件;

4.有对壁面边界(wall)才可以修改恢复系数。

注意:在Boundary Conditions 面板打开的面板中可以设定离散相边界条件。当设定完一个以上的喷射源之后,离散相边界条件的输入项就会出现在相应的面板中。

4 模拟结果及后处理

颗粒轨道的输出时,颗粒的可能的结果如下:

1.Escaped:(逃逸)意味着颗粒在已经设定了逃逸边界条件的流动边界终止了轨迹的计算。

2.Incomplete:(未完成):意味着颗粒轨迹的计算时间步长已经达到设定的最大步数(在Discrete Phase Model panel 面板中的Max. Number Of Steps 文本框中设定,)

3.Trapped:(捕获):意味着颗粒在已经设定了捕集边界条件的流动边界终止了轨迹的计算。

4.Evaporated:(蒸发):意味着颗粒在计算域中被完全蒸发掉了。 5.Aborted:(忽略):意味着颗粒由于舍入误差原因而不能进行计算。用户可以修改长度标尺或设定不同的初始条件来重新计算颗粒轨迹。

需要注意的是,除了用连续相的变量值来着色颗粒轨迹外,也可以使用离散相的各种变量值来进行着色。这些变量值包括:颗粒(已停留)时间、颗粒速度、颗粒直径、颗粒密度、颗粒质量、颗粒温度、颗粒所使用的定律、颗粒(积分)时间步长、颗粒雷诺数。在Color By类目框下的Particle Variables...下拉框中列出了所有可选的着色颗粒变量。为了显示计算域内的最大/最小值,可以点击Update Min/Max 按钮更新。

—————————————————————

DPM 模型的基本操作和注意事项

1 DPM 模型概述

DPM 模型可以用来模拟流场中的离散相,它的特点是使用方便,模拟思路

9

清晰,计算中可以对颗粒运动轨迹进行跟踪,结果直观;其缺点是,计算结果无法得到离散相各种场图,为结果分析造成很大不便。 FLUENT 提供了如下的离散相模型选项:

1. 使用Lagrangian 坐标下的公式计算颗粒的轨迹。这些公式涉及了稳态及非稳态条件下离散相的惯性力、曳力和重力。

2. 连续相中的漩涡对于离散相扩散产生的扰动进行预测。 3. 离散相的加热与冷却。 4. 液滴的蒸发和沸腾。

5. 提供对颗粒燃烧的模拟,可以通过对挥发份析出和焦炭燃烧来模拟煤粉的燃烧。

6. 可以选择是否进行连续相与离散相的耦合计算。 7. 液滴的破碎与合并。

这些模型时的FLUENT 可以用来对许多种离散相的问题进行模拟,包括颗粒的分离与分级,喷雾干燥,烟雾的扩散,液体中气泡的搅浑,液体燃料和煤的燃烧。

当需要在FLUENT 的模型中加入离散相时,可以通过定义颗粒的初始位置、速度、粒径、温度等参数实现,具体的操作过程在“Discrete PhaseModel”面板中完成。以上的参数再加上颗粒的物理属性,就可以作为计算颗粒轨迹和颗粒热、质传递的初始化条件。

下面就使用DPM 模型的基本步骤归纳如下: 对于稳态问题,可采用以下步骤求解: 1. 求解连续相流动; 2. 添加离散相;

3. 如果需要的话可以求解耦合流动; 4. 对计算结果进行后处理

对于非稳态问题,可通过以下步骤求解; 1. 添加离散相; 2. 初始化流场;

3. 设定时间步长。对于非耦合问题,FLUENT 会在每个时间步长的最后更新离散相的位置;对于耦合问题,在每次相间耦合计算中离散相的位置都回更新。

2 应用DPM 模型需要注意的一些问题

在Fluent 中应用DPM 模型进行计算时,需要注意DPM 模型忽略了两相流中颗粒之间的相互作用,以及颗粒相对连续相流动产生的影响。这就决定了两相

10

Fluent多相流模型选择与设定

利用Define/Models/DiscretePhaseModel打开DPM,本文截取了DiscretePhaseModel设置面板的一部分,对其中参数的设定进行详细的分析,如图1所示。图1DiscretePhaseModel面板当模拟两相耦合过程时,用户应该首先计算得到收敛或部分收敛的连续相流场,然后再创建喷射源
推荐度:
点击下载文档文档为doc格式
5lfbw7epa88az813iuwh
领取福利

微信扫码领取福利

微信扫码分享