好文档 - 专业文书写作范文服务资料分享网站

常微分方程(第三版,王高雄)课后答案

天下 分享 时间: 加入收藏 我要投稿 点赞

常微分方程

2.1

1.dy?2xy,并求满足初始条件:x=0,y=1的特解.

dx 解:对原式进行变量分离得

1dy?2xdx,两边同时积分得:lny?yc?1,故它的特解为y?ex。2x2?c,即y?cex把x?0,y?1代入得2

2.ydx?(x?1)dy?0,并求满足初始条件:x=0,y=1

2的特解.

解:对原式进行变量分离得:

?1111dx?2dy,当y?0时,两边同时积分得;lnx?1??c,即y?x?1yc?lnx?1y当y?0时显然也是原方程的解。当x?0,y?1时,代入式子得c?1,故特解是1y?。1?ln1?x

3

y dy?dxxy?x3y1?2 解:原式可化为:

- 1 -

1?ydy1?y1y1??显然?0,故分离变量得dy?dx323dxyyx?xx?x1?y1两边积分得ln1?222y212?lnx?ln1?x?lnc(c?0),即(1?2(1?x)?cxy)222y)(1?x)?cx

222故原方程的解为(1?4:(1?x)ydx?(1?y)xdy?0解:由y?0或x?0是方程的解,当xy?0时,变量分离两边积分lnx?x?lny?y?c,即lnxy?x?y?c,故原方程的解为lnxy?x?y?c;y?0;x?0. 1?x1?ydx?dy?0xy

- 2 -

5:(y?x)dy?(y?x)dx?0dyy?xydydu解:?,令?u,y?ux,?u?xdxy?xxdxdxduu?1u?11则u?x?,变量分离,得:?2du?dxdxu?1xu?1两边积分得:arctgu?12ln(1?u)??lnx?c。22dy2?y?x?ydxydydu解:令?u,y?ux,?u?x,则原方程化为:xdxdx6:xdu?dxx2(1?u)x2,分离变量得:11?u?2du?sgnx?1dxx两边积分得:arcsinu?sgnx?lnx?c?y代回原来变量,得arcsin?sgnx?lnx?cx另外,y?x也是方程的解。227:tgydx?ctgxdy?0解:变量分离,得:ctgydy?tgxdx两边积分得:lnsiny??lncosx?c.y2dy8:??edxy?3x解:变量分离,得ey13xdy??e?c23y9:x(lnx?lny)dy?ydx?0yy解:方程可变为:?ln?dy?dx?0xxy1lnu令u?,则有:dx??dlnuxx1?lnuy代回原变量得:cy?1?ln。xdyx?y10:?edx

e两边积分e?e解:变量分离yyxdy?edx?c x - 3 -

dyx?y?edx解:变量分离,edy?edx两边积分得:e?e?c2dy11.?(x?y)dxyxyxdydt??1dxdxdt1原方程可变为:?2?1dxt解:令x?y?t,则变量分离得:21?1tdt?dx,两边积分arctgt?x?c代回变量得:arctg(x?y)?x?c

12.dy?dx1(x?y)2

令x?y?t,则dydtdt1??1,原方程可变为??1dxdxdxt2t2变量分离2dt?dx,两边积分t?arctgt?x?c,代回变量t?1x?y?arctg(x?y)?x?c

13.dy2x?y?1?dxx?2y?111解:方程组2x?y?1?0,x?2y?1?0;的解为x??,y?3311dY2X?Y 令x?X?,y?Y?,则有?'33dXX?2YYdU2?2U?2U令?U,则方程可化为:X?XdX1?2U变量分离2 - 4 -

14,dyx?y?5?dxx?y?2dydt?1?,dxdxdtt原方程化为:1??,变量分离(t?7)dt?7dx

dxt?712两边积分t?7t??7x?c221代回变量(x?y?5)?7(x?y?5)??7x?c.2解:令x?y?5?t,则dy?(x?1)2?(4y?1)2?8xy?115.dx

dy解:方程化为?x2?2x?1?16y2?8y?1?8xy?1?(x?4y?1)2?2dxdydu1du9令1?x?4y?u,则关于x求导得1?4?,所以?u2?, dxdx4dx41228分离变量2du?dx,两边积分得arctg(?x?y)?6x?c,是3334u?9原方程的解。dyy6?2x216.?522dx2xy?xy

dy(y3)2?2x2dy33[(y3)2?2x2]解:?232??,,令y3?u,则原方程化为32dxy(2xy?xdx2xy?x3u2?62du3u2?6x2x??2udx2xu?x2?1x ,这是齐次方程,令

ududz3z2?6dzdzz2?z?6?z,则?z?x,所以?z?x,,x?,...........(1)xdxdx2z?1dxdx2z?1当z2?z?6?0,得z?3或z??2是(1)方程的解。即y3?3x或y3??2x是方程的解。2z?11 dz?dx,两边积分的(z?3)7(z?2)3?x5c,2xz?z?d即(y3?3x)7(y3?2x)3?x5c,又因为y3?3x或y3??2x包含在通解中当c?0时。故原方程当z2?z?6?0时,变量分离的解为(y3?3x)7(y3?2x)3?x15c17.

dy2x3?3xy?x?dx3x2y?2y3?y

- 5 -

5lf9k9a08e8mpoj7ocb09o8y29wtcx00yzn
领取福利

微信扫码领取福利

微信扫码分享