中考数学压轴题解题方法(二)
1.(2008年长春)(12分)已知两个关于x的二次函数y1与当x?k时,y2?17;且二次函数y2的图象的对称轴是直y2,y1?a(x?k)2?2(k?0),y1?y2?x2?6x?12线x??1. (1)求k的值;
(2)求函数y1,y2的表达式;
(3)在同一直角坐标系内,问函数y1的图象与y2的图象是否有交点?请说明理由.
解 (1)由y1?a(x?k)2?2,y1?y2?x2?6x?12
得
y2?(y1?y2)?y1?x2?6x?12?a(x?k)2?2?x2?6x?10?a(x?k)2.
?k时,y2?17,即k2?6k?10?17,
,故k的值为1. ?1,或k2??7(舍去)
又因为当x解得k1(2)由k?1,得y2?x2?6x?10?a(x?1)2?(1?a)x2?(2a?6)x?10?a,
2a?6所以函数y2的图象的对称轴为x??,
2(1?a)2a?6??1,解得a??1, 于是,有?2(1?a)所以
y1??x2?2x?1,y2?2x2?4x?11.
2); y1??(x?1)2?2,得函数y1的图象为抛物线,其开口向下,顶点坐标为(1,(3)由由
9);y2?2x2?4x?11?2(x?1)2?9,得函数y2的图象为抛物线,其开口向上,顶点坐标为(?1,故在同一直角坐标系内,函数y1的图象与y2的图象没有交点.
2. (10分)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴
上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
(1)求足球开始飞出到第一次落地时,该抛物线的表达式. (2)足球第一次落地点C距守门员多少米?(取43?7) (3)运动员乙要抢到第二个落点D,他应再向前跑多少米? 42(取26?5) 1A yMB解:(1)(3分)如图,设第一次落地时,
抛物线的表达式为
OCDx ·················································································································· 1分 y?a(x?6)2?4.y .由已知:当x?0时y?1 1?a??.即1?36a?4,.............2分
121M .......3分 ?表达式为y??(x?6)2?4.4 12NF2 E 121 A x?x?1) (或y??B O D x C 12 1
1(x?6)2?4?0. 12. ·············································· 2分 ?(x?6)2?48.x1?43?6≈13,x2??43?6?0(舍去)
···················································································································· 3分 ?足球第一次落地距守门员约13米.
(3)(4分)解法一:如图,第二次足球弹出后的距离为CD
根据题意:CD?EF(即相当于将抛物线AEMFC向下平移了2个单位)
1?2??(x?6)2?4解得x1?6?26,x2?6?26. ··································································· 2分
12 ·························································································································· 3分 ?CD?x1?x2?46≈10.?BD?13?6?10?17(米). ······················································································································· 4分
1(x?6)2?4?0.解法二:令? 12解得x1?6?43(舍),x2?6?43≈13 .. ········································································································································· 1分 ?点C坐标为(13,0)1(x?k)2?2.设抛物线CND为y?? ········································································································· 2分 121(13?k)2?2?0.将C点坐标代入得:? 12解得:k1?13?26?13(舍去),
(2)(3分)令
y?0,? ········································································································· 3分 k2?6?43?26≈6?7?5?18.1y??(x?18)2?2
121(x?18)2?2.令y?0,0?? 12,x2?18?26≈23 x1?18?26(舍去).?BD?23?6?17(米).
解法三:由解法二知,k?18, 所以CD?2(18?13)?10, 所以BD?(13?6)?10?17.
答:他应再向前跑17米. ········································································································································· 4分 (不答不扣分)
3.(2008年上海)(本题满分12分,每小题满分各4分)如图7,在平面直角坐标系中,点O为坐标原点,以点A(0,-3)为圆心,5为半径作圆A,交x轴于B、C两点,交y轴于点D、E两点. (1)求点B、C、D的坐标;
y (2)如果一个二次函数图像经过B、C、D三点,
求这个二次函数解析式;
D (3)P为x轴正半轴上的一点,过点P作与圆A相离
B C 并且与x轴垂直的直线,交上述二次函数图像于点F, O x 1.当⊿CPF中一个内角的正切之为时,求点P的坐标. A 2解:(1)∵点A的坐标为(0 ,?3),线段AD?5,∴点D的坐标(0 ,2).-(1分) 连结AC,在Rt△AOC中,∠AOC=90°,OA=3,AC=5,∴OC=4. (1分) ∴点C的坐标为(4 ,0);-------------------(1分) 同理可得 点B坐标为(?4 ,0).--------------- (1分) (2)设所求二次函数的解析式为
图7 y?ax2?bx?c,
2
由于该二次函数的图像经过B、C、D三点,则
?0?16a?4b?c,??0?16a?4b?c, ------------------------(3分) ?2?c,? 解得
1?a?? ,?8?12y??x?2;-------(1分) ∴所求的二次函数的解析式为b?0 ,?8?c?2,??121t?2),PC?t?4,PF?t2?2, 88(3)设点P坐标为(t ,0),由题意得t?5,----------------(1分) 且点F的坐标为(t,?∵∠CPF=90°,∴当△CPF中一个内角的正切值为①若
12时,
t?4CP1?时,即
12PF28?t?21,解得 t1?12, t2?4(舍);-------(1分) 212t?21PF1②当?时,8? 解得 t1?0(舍),t2?4(舍),------- (1分)
CP2t?42所以所求点P的坐标为(12,0).--------------------- (1分)
4.(本题满分14分,第(1)题满分3分,第(2)题满分7分,第(3)题满分4分)正方形ABCD
的边长为2,E是射线CD上的动点(不与点D重合),直线AE交直线BC于点G,∠BAE的平分线交
A D 射线BC于点O. A D
2(1)如图8,当CE=时,求线段BG的长;
3CE(2)当点O在线段BC上时,设?x,BO=y, E
EDBC 求y关于x的函数解析式; B O G
C (3)当CE=2ED时,求线段BO的长. 备用图
解:(1)在边长为2的正方形ABCD中,
CE?24,得DE?, 33图8
又∵AD//BC,即AD//CG,∴
∵BC?2,∴BG?3; ------------------------(1分) (2)当点O在线段BC上时,过点O作OF∵
CGCE1??,得CG?1.--------(2分) ADDE2?AG,垂足为点F,
AO为?BAE的角平分线,?ABO?90?,∴OF?BO?y.------(1分)
CGCE在正方形ABCD中,AD//BC,∴??x.
ADED∵AD?2,∴CG?2x.-----------------------(1分)
2xCE又∵.--------------(1分) ?x,CE?ED?2,得CE?1?xED∵在Rt△ABG中,AB?2,BG?2?2x,?B?90,
∴∵
AG?2x2?2x?2.
AF?AB?2,∴FG?AG?AF?2x2?2x?2?2.----------(1分)
3