好文档 - 专业文书写作范文服务资料分享网站

2019年全国各地中考数学压轴题汇编:几何综合(浙江专版)(解析卷)

天下 分享 时间: 加入收藏 我要投稿 点赞

2019年全国各地中考数学压轴题汇编:几何综合

2019年全国各地中考数学压轴题汇编(浙江专版)

几何综合

参考答案与试题解析

1.数学课上,张老师举了下面的例题:

例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)

例2 等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°) 张老师启发同学们进行变式,小敏编了如下一题: 变式 等腰三角形ABC中,∠A=80°,求∠B的度数. (1)请你解答以上的变式题.

(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x取值范围.

解:(1)若∠A为顶角,则∠B=(180°﹣∠A)÷2=50°; 若∠A为底角,∠B为顶角,则∠B=180°﹣2×80°=20°; 若∠A为底角,∠B为底角,则∠B=80°; 故∠B=50°或20°或80°; (2)分两种情况:

①当90≤x<180时,∠A只能为顶角, ∴∠B的度数只有一个; ②当0<x<90时, 若∠A为顶角,则∠B=(

)°;

若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°; 若∠A为底角,∠B为底角,则∠B=x°. 当

≠180﹣2x且180﹣2x≠x且

≠x,

即x≠60时,∠B有三个不同的度数.

综上所述,可知当0<x<90且x≠60时,∠B有三个不同的度数.

2019年全国各地中考数学压轴题汇编:几何综合

2.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B. (1)求证:AD是⊙O的切线.

(2)若BC=8,tanB=,求⊙O的半径.

(1)证明:连接OD, ∵OB=OD, ∴∠3=∠B, ∵∠B=∠1, ∴∠1=∠3,

在Rt△ACD中,∠1+∠2=90°, ∴∠4=180°﹣(∠2+∠3)=90°, ∴OD⊥AD,

则AD为圆O的切线; (2)设圆O的半径为r, 在Rt△ABC中,AC=BCtanB=4, 根据勾股定理得:AB==4

∴OA=4

﹣r,

在Rt△ACD中,tan∠1=tanB=, ∴CD=ACtan∠1=2,

根据勾股定理得:AD2=AC2+CD2=16+4=20, 在Rt△ADO中,OA2=OD2+AD2,即(4﹣r)2=r2+20,

解得:r=

2019年全国各地中考数学压轴题汇编:几何综合

3.如图,在6×6的网格中,每个小正方形边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件图形.

解:符合条件的图形如图所示:

4.如图,在四边形ABCD中,E是AB的中点,AD∥EC,∠AED=∠B. (1)求证:△AED≌△EBC. (2)当AB=6时,求CD的长.

(1)证明:∵AD∥EC, ∴∠A=∠BEC,

2019年全国各地中考数学压轴题汇编:几何综合(浙江专版)(解析卷)

2019年全国各地中考数学压轴题汇编:几何综合2019年全国各地中考数学压轴题汇编(浙江专版)几何综合参考答案与试题解析1.数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,
推荐度:
点击下载文档文档为doc格式
5l5n40do9q3xy6q955p40ne2d1fovz0149d
领取福利

微信扫码领取福利

微信扫码分享