三十二,兔子问题 An=A(n-1)An(n-2)
已知一对幼兔能在一月内长成一对成年兔子,一对成年兔子能在一月内生出一对幼兔。如果现在给你一对幼兔,问一年后共有多少对兔子? 析:1月:1对幼兔 2月:1对成兔
3月;1对成兔.1对幼兔 4;2对成兔.1对幼兔 5;;3对成兔.2对幼兔 6;5对成兔.3对幼兔.......
可看出规律:1,1,2,3,5,8(第三数是前两数之和),可求出第12项 为:13,21,34,55,89,144,答:有144只兔
三十三,称重量砝码最少的问题
例题:要用天平称出1克、2克、3克……40克这些不同的整数克重量,至少要用多少个砝码?这些砝码的重量分别是多少?
分析与解:一般天平两边都可放砝码,我们从最简单的情形开始研究。 (1)称重1克,只能用一个1克的砝码,故1克的一个砝码是必须的。 (2)称重2克,有3种方案: ①增加一个1克的砝码; ②用一个2克的砝码;
16
③用一个3克的砝码,称重时,把一个1克的砝码放在称重盘内,把3克的砝码放在砝码盘内。从数学角度看,就是利用3-1=2。
(3)称重3克,用上面的②③两个方案,不用再增加砝码,因此方案①淘汰。 (4)称重4克,用上面的方案③,不用再增加砝码,因此方案②也被淘汰。总之,用1克、3克两个砝码就可以称出(3+1)克以内的任意整数克重。 (5)接着思索可以进行一次飞跃,称重5克时可以利用
9-(3+1)=5,即用一个9克重的砝码放在砝码盘内,1克、3克两个砝码放在称重盘内。这样,可以依次称到1+3+9=13(克)以内的任意整数克重。 而要称14克时,按上述规律增加一个砝码,其重为 14+13=27(克),
可以称到1+3+9+27=40(克)以内的任意整数克重。
总之,砝码重量为1,3,32,33克时,所用砝码最少,称重最大,这也是本题的答案。
三十三,文示图
红圈: 球赛。 蓝圈: 电影 绿圈:戏剧。
X表示只喜欢球赛的人; Y表示只喜欢电影的人; Z表示只喜欢戏剧的人 a表示喜欢球赛和电影的人。仅此2项。不喜欢戏剧 b表示喜欢电影和戏剧的人。仅此2项。不喜欢球赛 c表示喜欢球赛和戏剧的人。仅此2项 不喜欢电影。 中间的阴影部分则表示三者都喜欢的。我们用 T表示。
回顾上面的7个部分。X,y,z,a,b,c,T 都是相互独立。互不重复的
17
部分
现在开始对这些部分规类。
X+y+z=是只喜欢一项的人 我们叫做 A a+b+c=是只喜欢2项的人 我们叫做B T 就是我们所说的三项都喜欢的人
x+a+c+T=是喜欢球赛的人数 构成一个红圈 y+a+b+T=是喜欢电影的人数 构成一个蓝圈 z+b+c+T=是喜欢戏剧的人数 构成一个绿圈 三个公式。 (1) A+B+T=总人数
(2) A+2B+3T=至少喜欢1个的人数和 (3) B+3T=至少喜欢2个的人数和
例题:学校教导处对100名同学进行调查,结果有58人喜欢看球赛,有38人喜欢看戏剧,有52人喜欢看电影。另外还知道,既喜欢看球赛又喜欢看戏剧(但不喜欢看电影)的有6人,既喜欢看电影又喜欢看戏剧(但不喜欢看球赛)的有4人,三种都喜欢的有12人。
通过这个题目我们看 因为每个人都至少喜欢三项中的一项。则我们用三个圈红,绿,蓝代表球赛。戏剧、和电影。 A+B+T=100 A+2B+3T=148 T=12 则可以直接计算只喜欢一项的和只喜欢两项的 A=64 B=24
典型例题:甲,乙,丙三个人共解出20道数学题,每人都解出了其中的12道题,
18
每道题都有人解出.只有一人解出的题叫做难题, 只有两人解出的题叫做中等题,三人解出的题叫做容易题,难题比容易题多( )题? A、6 B、5 C、4 D、3
【解析】第三题需要结合文氏图来理解了,画图会很清楚的 我们设a表示简单题目, b表示中档题目 c表示难题 a+b+c=20
c+2b+3a=12×3 这个式子式文氏图中必须要记住和理解的 将a+b+c=20变成 2a+2b+2c=40 减去 上面的第2个式子 得到: c-a=4 答案出来了
可能很多人都说这个方法太耗时了,的确。在开始使用这样方法的时候费时不少。当当完全了解熟练运用a+2b+3c这个公式时,你会发现再难的题目也不会超过1分钟。
三十四,九宫图问题 此公式只限于奇数行列
步骤1:按照斜线的顺序把数字按照从小到大的顺序,依次斜线填写!
步骤2: 然后将3×3格以外格子的数字折翻过来,
最左边的放到最右边,最右边的放到最左边 最上边的放到最下边,最下边的放到最上边
这样你再看中间3×3格子的数字是否已经满足题目的要求了 呵呵!
19
三十五,用比例法解行程问题
行程问题一直是国家考试中比较重要的一环,其应用之广恐无及其右者。行程问题的计算量按照基础做法不得不说非常大。所以掌握简单的方法尤为重要。
当然简单的方法需要对题目的基础知识的全面了掌握和理解。
在细说之前我们先来了解如下几个关系:
路程为S。速度为V 时间为T
S=VT V=S/T T=S/V S相同的情况下: V跟T成反比 V相同的情况下: S跟T成正比 T相同的情况下: S跟V成正比
注:比例点数差也是实际差值对应的比例! 理解基本概念后,具体题目来分
析
例一、甲乙2人分别从相距200千米的AB两地开车同时往对方的方向行驶。到达对方始发点后返回行驶,按照这样的情况,2人第4次相遇时甲比乙多
行了280千米已知甲的速度为60千米每小时。则乙的速度为多少? 分析:这个题目算是一个相遇问题的入门级的题目。我们先从基础的方法入手,要多给自己提问 求乙的速度即要知道乙的行驶路程S乙,乙所花的时间T
乙。这2个变量都没有告诉我们,需要我们去根据条件来求出:
乙的行驶路程非常简单可以求出来。因为甲乙共经过4次相遇。希望大家不要嫌我罗嗦。我希望能够更透彻的把这类型的题目通过图形更清晰的展现给大
家。
20