试题解析:(1)由已知F1??3,0?, F2?3,0? ,圆F2的半径为r?4
依题意有: PF1?PQ, ?PF1?PF2?PQ?PF2?QF2?r?4 故点P的轨迹是以F1,F2为焦点,长轴长为4的椭圆,即c?3,a?2,?b?1
故点P的轨迹E的方程为x24?y2?1 (2)令A?x1,y1?,B?x2,y2?,因A,B,D不共线,故l的斜率不为0,可令l的方程为:则由
{x?my?nx2?4y2?4 得?m2?4?y2?2mny?n2?4?0 则y?2mnn21?y2?m2?4,y?41?y2?m2?4 ①
Q?ADB被x轴平分, ?kDA?kDB?0
即
y1x?y2x?0,亦即y1x2?y2x1?4?y1?y2??0 ② 1?42?4而y1x2?y2x1?y1?my2?n??y2?my1?n??2my1y2?n?y1?y2? 代入②得:
2my1y2??n?4??y1?y2??0 ③
①代入③得: 2m ??n2?4???2mn?m2?4?? ??n?4????m2?4???0
m?0时得: n?1此时l的方程为: x?my?1过定点(1,0)
m?0时 , n?1亦满足,此时l的方程为: x?1
综上所述,直线l恒过定点(1,0)
21.(1) 函数f?x?在R上单调递増(2)见解析 试题解析:
(1)由题可得f??x??ex?x?a,
设g?x??f??x??ex?x?a,则g??x??ex?1,
x?my?n, 所以当x?0时g??x??0, f??x?在?0,???上单调递增, 当x?0时g??x??0, f??x?在???,0?上单调递减,
所以f??x??f??0??1?a,因为a??1,所以1?a?0,即f??x??0, 所以函数f?x?在R上单调递増.
(2)由(1)知f??x?在1,???上单调递増, 因为a?1?e,所以f??1??e?1?a?0,
所以存在t??1,???,使得f??t??0,即et?t?a?0,即a?t?et,
所以函数f?x?在1,t?上单调递减,在?t,???上单调递増,所以当x?1,???时
???111f?x?min?f?t??et?t2?at?et?t2?tt?et?et?1?t??t2,
2221令h?x??ex?1?x??x2,x?1,则h??x??x1?ex?0恒成立,
211所以函数h?x?在?1,???上单调递减,所以h?x??e?1?1???12?,
22111所以et?1?t??t2?,即当x??1,???时f?x?min?,
2221故函数f?x?在?1,???上的最小值小于.
2????x2?y2?1,22.(1)曲线C的直角坐标方程为: 直线l的普通方程为: y?x?6;(2)dmin?22. 3试题解析:
(1)由曲线C的极坐标方程得: ??2?sin??3,
222x2?y2?1, ∴曲线C的直角坐标方程为: 3曲线C的参数方程为{x?3cos?y?sin? ,(?为参数);
直线l的普通方程为: y?x?6.
(2)设曲线C上任意一点P为
?3cos?,sin?,则
?点P到直线l的距离为d????2cos?????63cos??sin??66?? ?22dmin?22. 0???,???;23.(1)???,(2)?m|?8?3????1??m?3? 2?4?3x,x?1,【解析】试题分析:(1)绝对值函去绝对值得到分段函数f?x??x?2?2x?1?{x,1?x?2, ,
3x?4,x?2,0???,???;得f?x??4的解集为???,(2)由题意得, f?x?min?2m?7m?4,即
2?8?3??2m2?7m?4?1,解得
试题解析:
1?m?3。 24?3x,x?1,(1)依题意, f?x??x?2?2x?1?{x,1?x?2,
3x?4,x?2,0???,??? 故不等式f?x??4的解集为???,(2)由(1)可得,当x?1时, f?x?取最小值1, f?x??2m?7m?4对于x?R恒成立,
222∴f?x?min?2m?7m?4,即2m?7m?4?1,∴2m?7m?3?0,
?8?3??2解之得
1?1??m?3,∴实数m的取值范围是?m|?m?3? 2?2?