2024年高考数学导数压轴题每日一题
例2已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),
且在点P处有相同的切线y=4x+2(新课标Ⅰ卷) (Ⅰ)求a,b,c,d的值 (Ⅱ)若x≥-2时,
f(x)?kg(x),求k的取值范围。
例2(Ⅰ)由已知得f(0)?2,g(0)?2,f?(0)?4,g?(0)?4,
而f?(x)=2x?b,g?(x)=e(cx?d?c),∴a=4,b=2,c=2,d=2;……4分 (Ⅱ)由(Ⅰ)知,f(x)?x?4x?2,g(x)?2e(x?1), 设函数F(x)=kg(x)?f(x)=2ke(x?1)?x?4x?2(x??2),
x22xxF?(x)=2kex(x?2)?2x?4=2(x?2)(kex?1),
有题设可得F(0)≥0,即k?1, 令F?(x)=0得,x1=?lnk,x2=-2,
2,??)时,(1)若1?k?e,则-2<x1≤0,∴当x?(?2,x1)时,F(x)<0,当x?(x1F(x) >0,即F(x)在(?2,x1)单调递减,在(x1,??)单调递增,故F(x)在x=x1取最小值F(x1), 而F(x1)=2x1?2?x12?4x1?2=?x1(x1?2)≥0,
∴当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立,
2(2)若k?e,则F?(x)=2e(x?2)(e?e),
2x2∴当x≥-2时,F?(x)≥0,∴F(x)在(-2,+∞)单调递增,而F(?2)=0, ∴当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立, (3)若k?e,则F(?2)=?2ke2?2?2=?2e?2(k?e2)<0,
∴当x≥-2时,f(x)≤kg(x)不可能恒成立, 综上所述,k的取值范围为[1,e].
2
第 1 页 共 2 页
第 2 页 共 2 页
2024年高考数学导数压轴题每日一题 (2)



