引理2 设????x1,x2,义:
,xn?,???y1,y2,,yn??V,k?R,作定
?,?????x1?y1,x2?y2,,xn?ynk???kx1,kx2,,kxn?,,xnyn??,????x1y1,x2y2,
?,则在V中定义了的加法、数乘、内积作成R上的线性空间一定构成欧几里得空间,简称欧氏空间 (在介绍柯西施瓦茨不等式在内积空间中的应用时会用到此定义).
推论2 设xi,yi,,zi,(i?1,2,n)是m组实数,则有
(?xy?iii?1n?zi)?(?x)(?y)mmimii?1i?1nn(?zim)
i?1n(2)
等号成立的充要条件为x1:y1:z1?x2:y2:z2?证明 为方便起见,不妨设
nn=xn:yn:zn .
S??xi, S??yi,mxmmymi?1i?1,S??zim,
mzi?1nai?从而由引理1有
yxi,bi?i,SySx,ci?zi,(i?1,2,Szn)
xiyi??zi?SxSy??Szaibi??ciaim?bim??cim?SxSy??Sz?
m对上式进行n的累次求和,可得
?xy?iiim1?zi?SxSy?m1?zi?SxSy?m?Sz?(aim?bim?i?1n?cim)
即
?xy?iiim?Sz(?ai??bi?mmi?1i?1nn??cim)i?1n
(4)
nn由于
?ai??(mi?1ni?1ximi?1)?m?1 SxSxni?1?xnmi同理
?bi?1mi?1,?cim?1
这样(4)式为
?xy?iiim?zi?SxSy??Sz
再两边m同时次幂,得
(?xiyi?im?zi)m?SxmSym??Szm
故证得(3)式成立.
注1 在命题1中,除xi?ai,yi?bi,(i?1,2,则不等式(3)就是不等式(1)的推广.
推论3 (将命题1推广为无限和不等式)设xi,yi,,n),其余均为1,且m?2,
,zi?R,i?N且
?xi?1?mi??,?y??,
mii?1?,?zim??,则
i?1??(?xiyi?i?1?zi)?(?x)(?y)mmimii?1i?1??(?zim)
i?1?(证明过程可仿推论2的证法并结合引理2).
3 微积分中的Cauchy-Schwarz不等式
命题2 设f(x),g(x)在?a,b?可积,则
???b2??b2? ??f(x)g(x)dx????f(x)dx???g(x)dx?
?a??a??a?(5)
证明 类似命题1可以利用判别式证明之.下面给出另一种证法:
因为f(x),g(x)在?a,b?上可积,则由定积分的性质f,g,fg均在上
22b2?a,b?上可积,对区间
?a,b?进行n等分,分点为
xi?a+b?ai,i?0,1,2,nb,n.由定积分的定义,有
?af(x)g(x)dx?lim?f(xi)g(xi)n??i?1bnb?a nn?abf(x)dx?lim?f2(xi)2n??i?1nb?a nb?a n2?g(x)dx?lim?g(xi)2an??i?1由(1)式知
???b2??b2?f(x)g(x)dx?f(x)dxg(x)dx????????? ?a??a??a?再由极限的保号性易知(5)式成立.
注2 若对?x??a,b?,f(x)?0,或f(x),g(x)成正比,则(5)式等号成立,但其逆不真.
例如,除有限点外,f(x)?g(x),x??a,b?,有
bbb2?f(x)dx??g(x)dx,但
aaf(x),g(x)并不成比例.
例2 利用柯西施瓦茨不等式求极限:设f(x),g(x)在?a,b?上连续,
bf(x)?0,g(x)有正下界,记dn??f(x)g(x)dx,?n?1,2,an?,求
证:limdn?1?maxf(x) .
n??da?x?bn证明 为了分析??dn?1??的变化趋势,研究dn邻项之间的关系. d?n?bdn??af(x)g(x)dx
n??g?x?f(x)abbn?12?g?x?f(x)12bn?12dx12????n?1n?1???g?x?f(x)dx???g?x?f(x)dx??a??a??dn?1?dn?1
2因为dn?0,平方得dn?dn?1dn?1,即
1212dn?1d?n. dndn?1因为f(x)在?a,b?连续,所以存在M?0,使得f?x??M,故
n?1d0?n?1??g?x?f?x?dxdnab?g?x?f?x?dx?M?g?x?f?x?dxaabnbn?g?x?f?x?dx?Mabn因为??dn?1??单调有上界,所以有极限. ?dn?
即limdn?1?M?maxf(x)n??da?x?bn在微积分中的柯西施瓦茨不等式也可以得到一些比较著名的不等式,如下面介绍的Minkowski不等式:
定理4 设f(x),g(x)在?a,b?可积,则Minkowski不等式
b12b12b12???2??2?2f(x)?g(x)dx?f(x)dx?g(x)dx??????????? ?a??a??a?证明 由(5)式
?b??b2??b2???f?x?g?x?dx????f(x)dx???g(x)dx? ?a??a??a?2?b?2fx?gxdx??????????a?b??fa2?x?dx?2?f?x?g?x?dx??g2?x?dx
aabb ?2?b22??f?x?dx?2??f?x?dx??g?x?dx???g?x?dx aa?a?a2bbb121?b?2?b2???2????f(x)dx????g(x)dx???a???a?
因为两边都大于等于零,且右边大括号也大于等于零,所以有
???2??2?2f(x)?g(x)dx?????f(x)????g(x)? ????a??a??a?将柯西施瓦茨不等式的幂指数进行扩充,有Holder不等式
b12b12b12定理5 f(x),g(x)?0,
11??1,p,q?R?且p?1,则 pqb1pb1qb
?a????pqf(x)g(x)dx???f(x)dx????g(x)dx?
?a??a?????pqf(x)dx?g(x)dx?????? ?a??a?b1pb1qb证明
?af(x)g(x)dx
11????bbpq????=??f(x)??f(x)pdx????g(x)??g(x)qdx??dx????aaa????????????bb??af(x)pb?g(x)qbdx
p??f(x)pdxaq??g(x)qdxa?11??1pq得证.
利用定理5,将定理4的幂指数进行扩充,有
????p??p?pf(x)?g(x)dx?f(x)?????????g(x)? ??a??a??a?b1pb1pb1p证明可参考定理3 的证明,且p=2即为定理4中的不等式. 同样将上命题2进行推广. 推论4 设fi(x)(i?1,2,,n)是闭区间?a,b?上为正的n个可积函数,则
??f(x)dx??(?(f(x))dx)niiai?1i?1abnnb1n (6)
b证明 不妨设(fi(x))dx?ki(i?1,2,ab?n,n),则
n??f(x)dxiai?1?ki?1n1ni(fi(x))n1???()ndx
kiai?1nb由引理1可得