好文档 - 专业文书写作范文服务资料分享网站

2018年电大高等数学基础形成性考核册及复习题考试题资料附答案

天下 分享 时间: 加入收藏 我要投稿 点赞

解:limtan3xsin3x1sin3x11?lim?lim??3?1??3?3

x?0x?0xxcos3xx?03xcos3x11?x2?1⒎求lim.

x?0sinx1?x2?1(1?x2?1)(1?x2?1)x2?lim?lim解:lim2x?0x?0x?0sinx(1?x?1)sinx(1?x2?1)sinx ?limx?0

x(1?x2?1)sinxx?0?0

?1?1??1⒏求lim(x??x?1x). x?3111(1?)x[(1?)?x]?1?1x?1xex?4x?lim?x解:lim( )?lim(x)?lim??ex3x??x?3x??x??33xx??e11?(1?)[(1?)3]3xxx3x2?6x?8⒐求lim2.

x?4x?5x?4x2?6x?8?x?4??x?2??limx?2?4?2?2

解:lim2?limx?4x?5x?4x?4?x?4??x?1?x?4x?14?131?⒑设函数

?(x?2)2,x?1?f(x)??x,?1?x?1

?x?1,x??1?讨论f(x)的连续性,并写出其连续区间. 解:分别对分段点x??1,x?1处讨论连续性 (1)

x??1?x??1?limf?x??limx??1x??1?x??1?limf?x??lim?x?1???1?1?0x??1?x??1?

所以limf?x??limf?x?,即f?x?在x??1处不连续 (2)

x?1?x?1?limf?x??lim?x?2???1?2??1x?1?x?1?22limf?x??limx?1f?1??1

所以limf?x??limf?x??f?1?即f?x?在x?1处连续

x?1?x?1?由(1)(2)得f?x?在除点x??1外均连续 故f?x?的连续区间为???,?1???1,???

《高等数学基础》第二次作业

第3章 导数与微分

(一)单项选择题

f(x)f(x)?(C ). 存在,则limx?0x?0xx A. f(0) B. f?(0) C. f?(x) D. 0cvx

f(x0?2h)?f(x0)?(D ). ⒉设f(x)在x0可导,则limh?02h A. ?2f?(x0) B. f?(x0) C. 2f?(x0) D. ?f?(x0)

⒈设f(0)?0且极限limf(1??x)?f(1)?(A ).

?x?0?x A. e B. 2e

11 C. e D. e

24 ⒋设f(x)?x(x?1)(x?2)?(x?99),则f?(0)?(D ).

⒊设f(x)?e,则limx A. 99 B. ?99 C. 99! D. ?99! ⒌下列结论中正确的是( C ).

A. 若f(x)在点x0有极限,则在点x0可导. B. 若f(x)在点x0连续,则在点x0可导. C. 若f(x)在点x0可导,则在点x0有极限. D. 若f(x)在点x0有极限,则在点x0连续.

(二)填空题

1?2xsin,x?0? ⒈设函数f(x)??,则f?(0)? 0 . x?x?0?0,df(lnx)2lnxx2xx5. ⒉设f(e)?e?5e,则??dxxx1 ⒊曲线f(x)?x?1在(1,2)处的切线斜率是k?

2π22? ⒋曲线f(x)?sinx在(,1)处的切线方程是y?x?(1?)

42242x2x ⒌设y?x,则y??2x(1?lnx)

1 ⒍设y?xlnx,则y???

x(三)计算题

⒈求下列函数的导数y?:

3x⑴y?(xx?3)e y??(x?3)e?x2e

2xx321⑵y?cotx?x2lnx y???csc2x?x?2xlnx

2xlnx?xx2⑶y? y?? 2lnxlnxcosx?2xx(?sinx?2xln2)?3(coxs?2x)⑷y? y?? 3xx4

1sinx(?2x)?(lnx?x2)cosx2lnx?xx⑸y? y?? sinxsin2x

⑹y?x4?sinxlnx y??4x?

3sinx?cosxlnx xsinx?x23x(cosx?2x)?(sinx?x2)3xln3⑺y? y?? x32x3

ex1x??⑻y?etanx?lnx y??etan

co2sxxxx

⒉求下列函数的导数y?: ⑴y?e1?x2

y??e

1?x2x1?x2

⑵y?lncosx

3?sinx32y??3x??3x2tanx3 3cosx ⑶y?xxx

7y?x y??x8

8

⑷y?3x?78?1x

1?2?111y??(x?x2)3(1?x2)

32

⑸y?cos2ex

y???exsin(2ex)

y?cosex2x2

x2y???2xesine

⑺y?sinnxcosnx

y??nsinn?1xcosxcosnx?nsinnxsin(nx)

y?5sinx2

y??2xln5cosx5 ⑼

2sinx2

y?esin2x

y??sin2xe

sin2x

y?x?ex2x2x2

y??x(x?2xlnx)?2xe ⑾

x2

y?xxex?eex

y??xeexxex(?elnx)?eexx

⒊在下列方程中,是由方程确定的函数,求:

⑴ycosx?e2y

y?cosx?ysinx?2e2yy?

y??ysinxcosx?2e2y

⑵y?cosylnx

y??siny.y?lnx?cosy.1x

y??cosyx(1?sinylnx)

⑶2xsiny?x2y

2xcosy.y??2siny?2yx?x2y?y2y??2xy?2ysiny2xy2cosy?x2

⑷y?x?lny

y??y?y?1 y??yy?1

⑸lnx?ey?y2 1x?eyy??2yy? y??1x(2y?ey)

⑹y2?1?exsiny

2yy??excosy.y??siny.ex

y??exsiny2y?excosy

y?(2xcosy?x22yxy2)?y2?2siny

2018年电大高等数学基础形成性考核册及复习题考试题资料附答案

解:limtan3xsin3x1sin3x11?lim?lim??3?1??3?3x?0x?0xxcos3xx?03xcos3x11?x2?1⒎求lim.x?0sinx1?x2?1(1?x2?1)(1?x2?1)x2?lim?lim解:lim2x?0x?0x?0sinx(1?x?1)sinx(1?x2?1)sinx?limx?
推荐度:
点击下载文档文档为doc格式
5k6qj2qkft036aw5tvxo0daes3y38300x47
领取福利

微信扫码领取福利

微信扫码分享