ÊýѧÊÔ¾í
Ö´ÐÅÖÐѧ2024-2024ѧÄê¶ÈµÚ¶þѧÆÚ¸ßÈý¼¶µÚÈý´ÎÄ£Ä⿼ÊÔ
ÎÄÊý×ۺϲâÊÔÌâ
Ò»¡¢Ñ¡ÔñÌ⣺±¾´óÌâ¹² 10СÌ⣬ÿСÌâ5·Ö£¬¹²50·Ö£¬ÔÚÿСÌâ¸ø³öµÄËĸöÑ¡ÏîÖУ¬Ö»ÓÐ Ò»ÏîÊÇ·ûºÏ
ÌâÄ¿ÒªÇóµÄ?
1. ÒÑÖª¼¯ºÏA = {x ¡ªax¡ª1 =0}, B={x¡ª1,1,ÈôAG B,ÔòʵÊýaµÄÈ¡ÖµµÄ¼¯ºÏÊÇ
(
)
A. {¡ª1}
2.
B. {1} C. {¡ª1,1} D. {o, ¡ª1,1}
(-i)(i(
)
3
ÊÇÐéÊýµ¥Î»)µÄÖµµÈÓÚ
A.1
B.
i
C.
-1
4 4
D.
-i
(
)
ÖÅ
A.-10
B.10
¡ö* 4
3. ÒÑ֪ƽÃæÏòÁ¿ a=(-2, V) , 3a ? 2b =(-4,-8),Ôò a ¶þ
C.-20
D.20
4. ÉèSnÊÇÕýÏîµÈ±ÈÊýÁÐ{ ( )
an}µÄÇ°nÏîºÍ£¬S2 =4 , S4 =20ÔòÊýÁеÄÊ×Ïîa1
=
1
A.
B.
4
C.2
D.5
3
5. Èôº¯Êýf(x)=e()
x
3
-e?µÄ¶¨ÒåÓòΪ R ,±´U
B.
A. f (x)ΪÆ溯Êý,ÇÒΪRÉϵļõº¯Êý Êý
C.
f (x)Ϊżº¯Êý,ÇÒΪRÉϵļõº¯
D.
f(x)ΪÆ溯Êý,ÇÒΪRÉϵÄÔöº¯Êý f (x)Ϊżº¯
Êý,ÇÒΪRÉϵÄÔöº¯Êý
6 ?ÒÑÖª¡¸ABCÖУ¬? A,?B,. CµÄ¶Ô±ß·Ö±ðΪ a,b,cÈôc=2,a=2¡¢& ÇÒ?B=105¡ã£¬Ôò
¢ÛÈô m// n, m¡¹¶þ±´V n _¡µ µÄ ABC
¢ÜÈô m _¡µ£¬m¡¨ n, n
Ãæ
£º
»ý
Ϊ
()
K.2..2
D. .6 B.
.3 1 C. ,3-1
.2
ÊýѧÊÔ¾í
7.ÒÑÖª¡µ¡¢-ÊÇƽÃ棬m¡¢ ( )
¢ÙÈô m _ £º?, m¡¹£¬Ôò:- //
nÊÇÖ±Ïß,ÔòÏÂÁÐËĸöÃüÌâÖÐÕýÈ·ÃüÌâµÄ¸öÊýΪ
P
¢ÚÈô m// £º? - n Ôò m// n
ÊýѧÊÔ¾í
A.1¸ö
2 2
B.2 ¸ö C. D.4 ¸ö
&Ô²x y 4x 6^0µÄ¾¹ý×ø±êÔµãµÄÇÐÏß·½³ÌΪ
A. 3x 2y =0 C. 2x 3y =0
B. D.
3x_2y=0 2x_3y=0
9?ÔĶÁÈçͼµÄ³ÌÐò¿òͼ£¬ÈôÊäÈë (×¢£º¿òͼÖеĸ³Öµ·ûºÅ
s = 4£¬ t=5£¬ÔòÊä³öµÄÊý×ÖaÓëiµÄºÍΪ
Ò²¿ÉÒÔд³É
-¡±»ò¡°¹¤¡±)
¿ªÊ¼ Íõ
a ¡ª s^i
A.21
B.22
C.
24
D.25
i =1
JÊÇ
Êä³öžéi ½á–|
2 2
10?ÒÑ֪˫ÇúÏß óÆ-Óë=1(a b 0)µÄ°ë½¹¾àΪc£¬Ö±ÏßIµÄ·½³ÌΪbx ? ay-ab =0£¬Èô
a b
ÔµãOµ½Ö±ÏßlµÄ¾àÀëΪ ¡ªc£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊΪ
4
ÈË 2Ò»3
A.
»ò 2
B.
23 3
3
2¡¢3
C. ¡¢¡¢2»ò -
3
D. 2
¶þ?Ìî¿ÕÌ⣺±¾´óÌâ¹² 5СÌ⣬ÆäÖÐ14?15ÌâÊÇÑ¡×öÌ⣬¿¼ÉúÖ»ÄÜÑ¡×öÒ»Ì⣬Á½ÌâÈ«´ðµÄ£¬Ö» ¼ÆËãÇ°Ò»ÌâµÃ·Ö.ÿСÌâ 5·Ö£¬Âú·Ö20·Ö.
3
2
ÊýѧÊÔ¾í
11.ÒÑÖªº¯Êýf(x)=x -3x -3x 2£¬Ôò´Ëº¯ÊýµÄ¼«´óÖµµãÊÇ ___________________
12.ÒÑÖªÃüÌâp :¹ØÓÚxµÄº¯Êýy =x
2
- 3ax 4ÔÚ£Û1, +s£©ÉÏÊÇÔöº¯Êý£¬ÃüÌâ q :¹ØÓÚ xµÄº¯Êýy
=£¨2a -1£©xÔÚRÉÏΪ¼õº¯Êý£¬ÈôpÇÒqΪÕæÃüÌ⣬ÔòaµÄÈ¡Öµ·¶Î§ÊÇ _____________________
1
13.
Èô¶ÔÓÚʹ-X
2
? XÆñM³ÉÁ¢µÄËùÓг£Êý MÖУ¬ÎÒÃÇ°Ñ MµÄ×îСֵһ½Ð×ö-X2 ? xµÄÉÏÈ·
1 2 ½ç£¬ÓÒa, b ? ,ÇÒ ¡ö b =£¬±´V µÄÉÏÈ·½çÊÇ .
Ra
4 1
2a b
14.
£¨×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩
x = ? 3t
ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌÊÇ£û
t2
£¨tΪ²ÎÊý£©£¬µãM £¨6aÔÚÇúÏßCÉÏ£¬Ôò
y = ¡ª +1 . 2
15.
£¨¼¸ºÎÖ¤Ã÷Ñ¡½²Ñ¡×öÌ⣩
Èçͼ£¬ABÊÇ°ëÔ²0µÄÖ±¾¶£¬µãCÔÚ°ëÔ²ÉÏ£¬CD_ABÓÚD , ÇÒ AD =5DB£¬Éè NOCD=8£¬±´U
cos2B = __________________________________.
A 0 D a
Èý¡¢½â´ðÌ⣺±¾´óÌâ¹² 6СÌ⣬¹²80·Ö?½â´ðӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Öè 16.
£¨±¾Ð¡ÌâÂú·Ö12·Ö£©
ÒÑÖªº¯Êý f£¨x£©=s in 2x ,3COS2X-1 , x R.
I£©Çóº¯Êý
f £¨x£©µÄ×îСÕýÖÜÆÚ£» n£©7Ø£ Èô´æÔÚ X¡£? £Û0,£Ý£¬Ê¹²»µÈʽf£¨X¡££©£º£º£º a³ÉÁ¢£¬ÇóʵÊýaµÄÈ¡
Öµ·¶Î§.
ÊýѧÊÔ¾í
17<ÒÑÖªÁ½Ú¤Êý¹¤Ø¯Âú×ã<3
(I )Èô¹¤JEN,Çóʹ²»µÈʽ2r-/^2>0³ÉÁ¢µÄ¸ÅÂÊ£»
(II) S x,y € A ?Çóʹ²»µÈʽ2r-7 + 2 > 0²»¸ÐÁ¢µÄ¸ÅÂÊ\
18.(±¾Ð¡ÌâÂú·Ö14·Ö)
Èçͼ£¬ÔÚËÄÀâ׶ P-ABCDÖУ¬PD _ƽÃæABCD ;ËıßÐÎABCDÊÇÁâÐΣ¬±ß³¤Îª2, Ò»BCD =60£¬¾¹ýAC×÷ÓëPDƽÐеÄƽÃæ½»PBÓëµãE£¬ ABCDµÄÁ½¶Ô½ÇÏß½»µãΪF .
(I)ÇóÖ¤£ºAC _DE ;
(n)ÈôEF ¡ª..3£¬ÇóµãDµ½Æ½ÃæPBCµÄ¾àÀë.
P
E
D
C
B
(µÚ 18 Ìâ)
19.(±¾Ð¡ÌâÂú·Ö14·Ö) ÉèFÊÇÅ×ÎïÏßG : x
2
=4yµÄ½¹µã£¬µãPÊÇF¹ØÓÚÔµãµÄ¶Ô³Æµã.
(I )¹ýµãP×÷Å×ÎïÏßGµÄÇÐÏߣ¬ÈôÇеãÔÚµÚÒ»ÏóÏÞ£¬ÇóÇÐÏß·½³Ì£» (n )ÊÔ̽¾¿(I )ÖеÄÅ×ÎïÏß GµÄÇÐÏßÓ붯Բx
2
? (y-m)2 =5,m?RµÄλÖùØϵ