21.(本小题满分12分)
已知函数f?x??ex?cosx,g?x??x?sinx,其中e为自然对数的底数. (Ⅰ)求曲线y?f?x?在点(0,f(0))处的切线方程;
?π?(Ⅱ)若对任意x???,0?,不等式f?x?≥g?x??m恒成立,求实数m的取值范围;
?2??ππ?(Ⅲ)试探究当x???,?时,方程f(x)?g(x)?0解的个数,并说明理由.
?22?
请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分。 22.(本小题满分10分)选修4-1 :几何证明选讲
如图所示,已知PA与⊙O相切,A为切点,过点P的割线交圆于B、C两点,
弦CD∥AP,AD、BC相交于点E,F为CE上一点,且DE2 = EF·EC. (Ⅰ)求证:CE·EB = EF·EP;
(Ⅱ)若CEBE = 32,DE = 3,EF = 2,求PA的长.
23.(本小题满分10分)选修4-4:坐标系与参数方程
?3x??1?t??2(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标已知直线l的参数方程为??y?3?1t??2系,圆C的极坐标方程为??2cos?. (Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设M(?1,3),直线l与圆C相交于点A,B,求|MA||MB|.
24.(本小题满分10分)选修4-5:不等式选讲 设a,b,c都是正实数,求证: (Ⅰ)a?b?c?ab?bc?ca 222(Ⅱ)(a?b?c)(a?b?c)?9abc
18.(Ⅰ)
an?1an??3-------3分, bn?1bn即cn?1?cn?3,-------4分 又c1?1------5分
cn?3n?2-----6分
(Ⅱ)q4?4q?q5,q2?11,Qan?0,?q?0?q?--------7分 421bn?()n?1-------8分
21an?(3n?2)?()n?1-------9分
21Sn?8?(3n?4)?()n?1-------12分
2Q平面PAB?平面ABCD且相交于直线AB,19.(Ⅰ)证明:
而AD?平面ABCD,AD?AB
?AD?平面PAB,又PB?平面PAB?PB?AD,又PB?PD,ADIPD?D. ?PB?平面PAD.QPB?平面PBC,故平面PAD?平面PBC4分 (Ⅱ)取PB中点T,连接RT、ST,
QRT//PA,ST//BC.
且PB?PA,PB?BC.?PB?RT,PB?ST.
又RTIST=T,则PB?平面RST.又PB?平面PAD,?平面RSTP平面PAD.
且RS?平面RST,故RS//平面PAD.8分 (III)QCD?平面PDQ,?PQ?CD.
又PQ?AD,CD?AD?D,?PQ?平面ABCD.则PQ?AB,由已知AQ?12,PQ?32,?DQ?52,又CD?5,CD?QD,??CQD是面积S?15 2CD?DQ?4.则三棱锥P-CDQ的体积为V?1533?S?PQ?24,故三棱锥Q-PCD的体积为5324.分12 代入并整理得
kOM?kON4km2?2k??4k
2m2?22可得m?12 --------10分
22经验证满足m?2k?1…………………11分 ∴m?21 .………………………………………………………12分 221.解:(Ⅰ)依题意得,f?0??e0cos0?1,···················································· 1分 f??x??excosx?exsinx, ··············································································· 2分
································································································ 3分 f?(0)?1 ·
所以曲线y?f?x?在点(0,f(0))处的切线方程为y?x?1. ································ 4分 ?π?(Ⅱ)等价于对任意x???,0?,m≤[f(x)?g(x)]min. ··································· 5分
?2??π?设h(x)?f(x)?g(x),x???,0?.
?2?则h??x??excosx?exsinx?sinx?xcosx?ex?xcosx?ex?1sinx ?π?因为x???,0?,所以ex?xcosx≥0,ex?1sinx≤0,
?2??????????π?0,故h(x)在??,0?单调递增, ·所以h??x?…·················································· 6分
2???π???因此当x??时,函数h(x)取得最小值h?????; ····································· 7分
22?2?
【20套精选试卷合集】河北省石家庄市2019-2020学年高考数学模拟试卷含答案



