=BB′·BC =35×5
=15 ······················································································· 14分
120.已知:抛物线y=x 2-2x+a(a <0)与y轴相交于点A,顶点为M.直线y=x-
2a分别与x轴,y轴相交于B,C两点,并且与直线AM相交于点N.
(1)填空:试用含a的代数式分别表示点M与N的坐标,则M( , ),N( , );
(2)如图,将△NAC沿y轴翻折,若点N的对应点N ′恰好落在抛物线上,AN ′与x轴交于点D,连结CD,求a的值和四边形ADCN的面积; (3)在抛物线y=x 2-2x+a(a <0)上是否存在一点P,使得以P,A,C,N为
顶点的四边形是平行四边形?若存在,求出P点的坐标;若不存在,试说明理由.
11
41解:(1)M(1,a-1),N(a,-a). ······························································ 4分
33(2)∵点N ′是△NAC沿y轴翻折后点N的对应点
41∴点N ′与点N关于y轴对称,∴N ′(-a,-a).
334114将N ′(-a,-a)代入y=x 2-2x+a,得-a=(-a)2-2×(-
33334a)+a 39整理得4a 2+9a=0,解得a1=0(不合题意,舍去),a2=-. ···· 6分
43∴N ′(3,),∴点N到y轴的距离为3.
499∵a=-,抛物线y=x 2-2x+a与y轴相交于点A,∴A(0,-).
44∴直线AN ′的解析式为y=x -∴D(
99,将y=0代入,得x =.
4499,0),∴点D到y轴的距离为. 4419191899××3+××= ············· 8分
4222216∴S四边形ADCN =S△ACN +S△ACN =
(3)如图,当点P在y轴的左侧时,若四边形ACPN是平行四边形,则PN平
行且等于AC.
47∴将点N向上平移-2a个单位可得到点P,其坐标为(a,-a),代
33744入抛物线的解析式,得:-a=(a)2-2×a+a,整理得8a 2+3a
333=0.
3解得a1=0(不合题意,舍去),a2=-.
817∴P(-,) ················································································· 10分
28当点P在y轴的右侧时,若四边形APCN是平行四边形, 则AC与PN互相平分.
∴OA=OC,OP=ON,点P与点N关于原点对称.
41∴P(-a,a),代入y=x 2-2x+a,得
3312
144a=(-a)2-2×(-a)+a,整理得8a 2+15a=0.
333解得a1=0(不合题意,舍去),a2=-
15. 855∴P(,-) ················································································· 12分
28∴存在这样的点P,使得以P,A,C,N为顶点的四边形是平行四边形,点P的坐标为 (-
1755,)或(,-). 2828
13