好文档 - 专业文书写作范文服务资料分享网站

2012中考数学压轴题及答案40例(5) 

天下 分享 时间: 加入收藏 我要投稿 点赞

(2)设点D的坐标为(xD,yD),由于D为抛物线的顶点

2332?(-3)3∴xD=-=1,yD=-

32383=33. ×1 2+×1+

333∴点D的坐标为(1,33).

如图,过点D作DN⊥x轴于N,则DN=33,AN=3,∴AD=32+(33)2=6.

∴∠DAO=60° ···················································································· 4分 ∵OM∥AD

①当AD=OP时,四边形DAOP为平行四边形. ∴OP=6

∴t=6(s) ······························································ 5分 ②当DP⊥OM时,四边形DAOP为直角梯形. 过点O作OE⊥AD轴于E.

在Rt△AOE中,∵AO=2,∠EAO=60°,∴AE=1. (注:也可通过Rt△AOE∽Rt△AND求出AE=1) ∵四边形DEOP为矩形,∴OP=DE=6-1=5.

∴t=5(s) ·························································································· 6分 ③当PD=OA时,四边形DAOP为等腰梯形,此时OP=AD-2AE=6-2=

4.

∴t=4(s)

综上所述,当t=6s、5s、4s时,四边形DAOP分别为平行四边形、直角

梯形、等腰梯形.

····················································································· 7分

6

(3)∵∠DAO=60°,OM∥AD,∴∠COB=60°.

又∵OC=OB,∴△COB是等边三角形,∴OB=OC=AD=6. ∵BQ=2t,∴OQ=6-2t(0<t<3) 过点P作PF⊥x轴于F,则PF=∴S四边形BCPQ =S△COB -S△POQ

311×6×33-×(6-2t)×t

22236333(t-)2+ ······················································ 9分 2823t. ··············································· 8分 2=

6333∴当t=(s)时,S四边形BCPQ的最小值为. ······························ 10分

8233339此时OQ=6-2t=6-2×=3,OP=,OF=,∴QF=3-=,

44422PF=

33. 4∴PQ=PF2+QF2=(333329 ······································ 11分 )+()2=244119.如图,已知直线y=-x+1交坐标轴于A、B两点,以线段AB为边向上作正方形

2ABCD,过点A,D,C的抛物线与直线另一个交点为E.

(1)请直接写出点C,D的坐标; (2)求抛物线的解析式;

(3)若正方形以每秒5个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止.设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;

(4)在(3)的条件下,抛物线与正方形一起平移,直至顶点D落在x轴上时停止,求抛物线上C、E两点间的抛物线弧所扫过的面积.

7

解:(1)C(3,2),D(1,3); ·············································································· 2分

(2)设抛物线的解析式为y=ax 2+bx+c,把A(0,1),D(1,3),C(3,2)代

5?a=-?6?c=1?17??得?a+b+c=3 解得?b= ················································· 4分

6?9a+3b+c=2???c=1??517∴抛物线的解析式为y=-x 2+x+1; ······································· 5分

66(3)①当点A运动到点F(F为原B点的位置)时

8

∵AF=12+22=5,∴t=当0< t ≤1时,如图1. B′F=AA′=5t

∵Rt△AOF∽Rt△∠GB ′F,∴∴B ′G=

55=1(秒).

OAB?G. =B?FOF5OA1·B ′F=×5t=t

22OF正方形落在x轴下方部分的面积为S即为△B ′FG的面积S△B′FG

51′15∴S=S△B′B F·B ′G=×5t×t=t 2 ··························· 7分 FG=

2224②当点C运动到x轴上时

CC?OB∵Rt△BCC ′∽Rt△∠AOB,∴. =

BCOA∴CC ′=

25OB2·BC=×5=25,∴t==2(秒).

1OA5当1< t ≤2时,如图2.

∵A ′B ′=AB=5,∴A ′F=5t-5. ∴A ′G=∵B ′H=

5t-5 25t 2∴S=S梯形A′B′HG=

1 G+B ′H)·A ′B ′(A ′

29

5t-551t)·5 =(+

22255··································································· 9分 =t- ·

24③当点D运动到x轴上时

DD′=35 t=

355=3(秒)

当2< t ≤3时,如图3. ∵A ′G=

5t-5 25t-535-5t∴GD′ =5-=

22∴D′H=35-5t ∴S△D′GH =

35-5t2135-5t()(35-5t)=()

222 -S△D′∴S=S正方形A′B′C′D′GH

=(5)2-(

35-5t2

)251525=-t 2+t- ··································································· 11分

424(4)如图4,抛物线上C、E两点间的抛物线弧所扫过的面积为图中阴影部分

的面积.

∵t=3,BB′=AA′=DD′=35

∴S阴影=S矩形BB′·········································································· 13分 C′C ·

10

2012中考数学压轴题及答案40例(5) 

(2)设点D的坐标为(xD,yD),由于D为抛物线的顶点2332?(-3)3∴xD=-=1,yD=-32383=33.×12+×1+333∴点D的坐标为(1,33).如图,过点D作DN⊥x轴于N,则DN=33,AN=3,∴AD=32+(33)2=6.∴∠DAO=60°······
推荐度:
点击下载文档文档为doc格式
5huqo1c8vv4n7xz5eba7
领取福利

微信扫码领取福利

微信扫码分享