2012中考数学压轴题及答案40例(5)
16.如图,已知与x轴交于点A(1,0)和B(5,0)的抛物线l1的顶点为C(3,4),抛物线l2与l1关于x轴对称,顶点为C?. (1)求抛物线l2的函数关系式;
(2)已知原点O,定点D(0,4),l2上的点P与l1上的点P?始终关于x轴对称,则当点
P运动到何处时,以点D,O,P,P?为顶点的四边形是平行四边形?
(3)在l2上是否存在点M,使△ABM是以AB为斜边且一个角为30?的直角三角形?若存,求出点M的坐标;若不存在,说明理由.
?4). 解:(1)由题意知点C?的坐标为(3,设l2的函数关系式为y?a(x?3)2?4.
,0)在抛物线y?a(x?3)2?4上, 又?点A(1?(1?3)2a?4?0,解得a?1.
?抛物线l2的函数关系式为y?(x?3)2?4(或y?x2?6x?5).
(2)?P与P?始终关于x轴对称, ?PP?与y轴平行.
设点P的横坐标为m,则其纵坐标为m2?6m?5,
?OD?4,?2m2?6m?5?4,即m2?6m?5??2.
当m2?6m?5?2时,解得m?3?6. 当m2?6m?5??2时,解得m?3?2.
1
?当点P运动到(3?6,2)或(3?6,2)或(3?2,?2)或(3?2,?2)时,
∥OD,以点D,O,P,P?为顶点的四边形是平行四边形. P?P
(3)满足条件的点M不存在.理由如下:若存在满足条件的点M在l2上,则
?AMB?90?,??BAM?30?(或?ABM?30?), ?BM?11AB??4?2. 22过点M作ME?AB于点E,可得?BME??BAM?30?.
?EB?11BM??2?1,EM?3,OE?4. 22?点M的坐标为(4,?3).
但是,当x?4时,y?42?6?4?5?16?24?5??3??3.
?不存在这样的点M构成满足条件的直角三角形.
17.如图,抛物线y=-x 2+bx+c与x轴交于A(1,0),B(-3,0)两点. (1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由; (3)在(1)中的抛物线上的第二象限内是否存在一点P,使△PBC的面积最大?,
若存在,求出点P的坐标及△PBC的面积最大值;若不存在,请说明理由.
2
解:(1)将A(1,0),B(-3,0)代入y=-x 2+bx+c得
?-1+b+c=0 ············································································· 2分 ?-9-3b+c=0?解得??b=-2 ························································································ 3分 c=3?∴该抛物线的解析式为y=-x 2-2x+3. ············································ 4分 (2)存在.·································································································· 5分
该抛物线的对称轴为x=-
-2=-1
2?(-1)∵抛物线交x轴于A、B两点,∴A、B两点关于抛物线的对称轴x=-1对
称.
由轴对称的性质可知,直线BC与x=-1的交点即为所求的Q点,此时
△QAC的周长最小,如图1.
将x=0代入y=-x 2-2x+3,得y=3. ∴点C的坐标为(0,3).
3
设直线BC的解析式为y=kx+b1, 将B(-3,0),C(0,3)代入,得
1?-3k+b1=0?k= 解得? ?b=3b=3?1?1∴直线BC的解析式为y=x+3. ··············· 6分 联立??x=-1?x=-1 解得?
y=x+3y=2??∴点Q的坐标为(-1,2). ································································· 7分 (3)存在.·································································································· 8分
设P点的坐标为(x,-x 2-2x+3)(-3<x<0),如图2. ∵S△PBC =S四边形PBOC -S△BOC =S四边形PBOC -当S四边形PBOC有最大值时,S△PBC就最大.
∵S四边形PBOC =SRt△PBE+S直角梯形PEOC ························································· 9分
==
11BE·PE+(PE+OC)·OE 2211(x+3)(-x 2-2x+3)+(-x 2-2x+3+3)(-x) 2219×3×3=S四边形PBOC - 2233927=-(x+)2++
22283927当x=-时,S四边形PBOC最大值为+.
228927927∴S△PBC最大值=+-=. ·············· 10分
228833315当x=-时,-x 2-2x+3=-(-)2-2×(-)+3=.
2224315∴点P的坐标为(-,). ···························································· 11分
244
18.如图,已知抛物线y=a(x-1)2+33(a≠0)经过点A(-2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC.
(1)求该抛物线的解析式;
(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运
动的时间为t(s).问:当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形? (3)若OC=OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长
度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.
解:(1)把A(-2,0)代入y=a(x-1)2+33,得0=a(-2-1)2+33.
∴a=-
3 ·························································································· 1分 3∴该抛物线的解析式为y=-
3(x-1)2+33 3即y=-
322383x +x+. ··························································· 3分 3335